Advertisement

Morphological Representations of Scalar Fields

  • Silvia Biasotti
  • Leila De Floriani
  • Bianca Falcidieno
  • Laura Papaleo
Part of the Mathematics and Visualization book series (MATHVISUAL)

We consider the problem of representing and extracting morphological information from scalar fields. We focus on the analysis and comparison of algorithms for morphological representation of both 2D and 3D scalar fields. We review algorithms which compute a decomposition of the domain of a scalar field into a Morse and Morse-Smale complex and algorithms which compute a topological representation of the level sets of a scalar field, called a contour tree. Extensions of the morphological representations discussed in the chapter are briefly discussed.

Keywords

Scalar Field Simplicial Complex Morse Theory Morse Function Integral Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Attene, S. Biasotti, and M. Spagnuolo. Shape understanding by contour-driven retiling. The Visual Computer, 19(2-3):127-138, 2003.zbMATHGoogle Scholar
  2. 2.
    U. Axen. Topological Analysis using Morse Theory and Auditory Display. PhD thesis, University of Illinois at Urbana-Champaign, 1998.Google Scholar
  3. 3.
    U. Axen. Computing Morse functions on triangulated manifolds. In SODA ’99: Proceedings of the 10th ACM-SIAM Symposium on Discrete Algoritms 1999, pages 850-851. ACM Press, 1999.Google Scholar
  4. 4.
    C. L. Bajaj, V. Pascucci, and D. R. Shikore. Visualization of scalar topology for structural enhancement. In Proceedings IEEE Visualization’98, pages 51-58. IEEE Computer Society, 1998.Google Scholar
  5. 5.
    C. L. Bajaj and D. R. Shikore. Topology preserving data simplification with error bounds. Computers and Graphics, 22(1):3-12, 1998.Google Scholar
  6. 6.
    T. F. Banchoff. Critical points and curvature for embedded polyhedra. Journal of Differential Geometry, 1:245-256, 1967.zbMATHMathSciNetGoogle Scholar
  7. 7.
    T. F. Banchoff. Critical points and curvature for embedded polyhedral surfaces. American Mathematical Monthly, 77:475-485, 1970.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    S. Beucher. Watershed, hierarchical segmentation and waterfall algorithm. In Jean Serra and Pierre Soille, editors, Proc. Mathematical Morphology and its Applications to Image Processing, pages 69-76, Fontainebleau, September 1994. Kluwer Ac. Publ.Google Scholar
  9. 9.
    P. Bhahaniramka, R. Wenger, and R. Crawfi. Iso-contouring in higher dimensions. In IEEE Visualization 2000, pages 267-273, 2000.Google Scholar
  10. 10.
    S. Biasotti. Computational topology methods for shape modelling applications. PhD thesis, University of Genova, May 2004.Google Scholar
  11. 11.
    S. Biasotti. Reeb graph representation of surfaces with boundary. In SMI ’04: Proceedings of Shape Modeling Applications 2004, pages 371-374, Los Alamitos, Jun 2004. IEEE Computer Society.CrossRefGoogle Scholar
  12. 12.
    S. Biasotti, D. Attali, J.-D. Boissonnat, H. Edelsbrunner, G. Elber, M. Mortasa, G. Sanniti di Baja, M. Spagnuolo, and M. Tanase. Skeletal structures. In Shape Analysis and Structuring. Springer, 2007.Google Scholar
  13. 13.
    S. Biasotti, B. Falcidieno, and M. Spagnuolo. Extended Reeb graphs for surface understanding and description. Lecture Notes in Computer Science, 1953:185-197, 2000.CrossRefGoogle Scholar
  14. 14.
    S. Biasotti, B. Falcidieno, and M. Spagnuolo. Surface Shape Understanding based on Extended Reeb Graphs, pages 87-103. John Wiley & Sons, 2004.Google Scholar
  15. 15.
    R. Bott. Morse Theory Indomitable. Publ Math.I.H.E.S., 68:99-117, 1998.Google Scholar
  16. 16.
    R.L. Boyell and H. Ruston. Hybrid techniques for real-time radar simulation. In Proceedings of the 1963 Fall Joint Computer Conference, Nov 1963.Google Scholar
  17. 17.
    P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A multi-resolution data structure for two-dimensional Morse functions. In G. Turk, J. van Wijk, and R. Moorhead, editors, Proceedings IEEE Visualization 2003, pages 139-146. IEEE Computer Society, October 2003.Google Scholar
  18. 18.
    P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A topological hierarchy for functions on triangulated surfaces. IEEE Transactions on Visualization and Computer Graphics, 10(4):385-396, July/August 2004.CrossRefGoogle Scholar
  19. 19.
    P.-T. Bremer, V. Pascucci, and B. Hamann. Maximizing adaptivity in hierarchical topological models. In International Conference on Shape Modeling and Applications, pages 300-309. IEEE Computer Society, 2005.Google Scholar
  20. 20.
    H. Carr. Topological Manipulation of isosurfaces. PhD thesis, The University of British Columbia, 2004.Google Scholar
  21. 21.
    H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions. In SODA ’00: Proceedings of the 11th ACM-SIAM Symposium on Discrete Algoritms 2000, pages 918-926. ACM Press, 2000.Google Scholar
  22. 22.
    H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions. Computational Geometry : Theory and Applications, 24:75-94, 2003.zbMATHMathSciNetGoogle Scholar
  23. 23.
    Y.-J. Chiang, T. Lenz, X. Lu, and G. Rote. Simple and optimal output-sensitive construction of contour trees using monotone paths. Computational Geometry: Theory and Applications, 30:165-195, 2005.zbMATHMathSciNetGoogle Scholar
  24. 24.
    K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Loops in Reeb graphs of 2-manifolds. In SCG ’03: Proceedings of the 19th Annual Symposium on Computational Geometry 2003, pages 344-350. ACM Press, 2003.Google Scholar
  25. 25.
    M. Couprie and G. Bertrand. Topological grayscale watershed transformation. In Vision Geometry V. Proceedings SPIE 3168, pages 136-146. SPIE, 1997.Google Scholar
  26. 26.
    J. Cox, D. B. Karron, and N. Ferdous. Topological zone organization of scalar volume data. Journal of Mathematical Imaging and Vision, 18:95-117, 2003.zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    E. Danovaro, L. De Floriani, P. Magillo, M. M. Mesmoudi, and E. Puppo. Morphologydriven simplification and multi-resolution modeling of terrains. In E. Hoel and P. Rigaux, editors, Proceedings ACM-GIS 2003 - The 11th International Symposium on Advances in Geographic Information Systems, pages 63-70. ACM Press, November 2003.Google Scholar
  28. 28.
    E. Danovaro, L. De Floriani, and M. M. Mesmoudi. Topological analysis and characterization of discrete scalar fields. In T. Asano, R. Klette, and C. Ronse, editors, Theoretical Foundations of Computer Vision, Geometry, Morphology, and Computational Imaging, volume 2616 of Lecture Notes on Computer Science, pages 386-402. Springer Verlag, 2003.Google Scholar
  29. 29.
    E. Danovaro, L. De Floriani, L. Papaleo, and M. Vitali. A multi-resolution representation for terrain morphology. In M. Raubal, H.J. Miller, A.U. Frank, and M.F. Goodchild, editors, Geographic Information Science, 4th International Conference, GIScience 2006, M ünster, Germany, September 20-23, 2006, Proceedings, volume 4197 of Lecture Notes in Computer Science, pages 33-46. Springer, 2006.Google Scholar
  30. 30.
    M. de Berg and M. van Kreveld. Trekking in the Alps without freezing or getting tired. Algorithmica, 19:306-323, 1997.CrossRefMathSciNetGoogle Scholar
  31. 31.
    L. De Floriani, P. Magillo, and E. Puppo. Data structures for simplicial multi-complexes. In R. H. Guting, D. Papadias, and F. Lochovsky, editors, Advances in Spatial Databases, volume 1651 of Lecture Notes in Computer Science, pages 33-51. 1999.Google Scholar
  32. 32.
    L. De Floriani, E. Puppo, and P. Magillo. A formal approach to multi-resolution modeling. In W. Strasser, R. Klein, and R. Rau, editors, Geometric Modeling: Theory and Practice, pages 302-323. Springer-Verlag, 1997.Google Scholar
  33. 33.
    L. De Floriani, E. Puppo, and P. Magillo. Applications of computational geometry to Geographic Information Systems. In J. R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, chapter 7, pages 333-388. Elsevier Science, 1999.Google Scholar
  34. 34.
    Shen Dong, Peer-Timo Bremer, Michael Garland, Valerio Pascucci, and John C. Hart. Spectral surface quadrangulation. ACM Transactions on Graphics, 25(3):1057-1066, July 2006.CrossRefGoogle Scholar
  35. 35.
    H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Morse-Smale complexes for piecewise linear 3-manifolds. In Proceedings 19th ACM Symposium on Computational Geometry, pages 361-370, 2003.Google Scholar
  36. 36.
    H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse complexes for piecewise linear 2-manifolds. In Proceedings 17th ACM Symposium on Computational Geometry, pages 70-79. ACM Press, 2001.Google Scholar
  37. 37.
    H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discrete and Computational Geometry, 30:87-107, 2003.zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    R. Forman. Morse theory for cell complexes. Advances.in Mathematics, 134:90-145, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    R. Forman. Morse theory for cell complexes. Advances in Mathematics, 134:90-145, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    T. Gerstner and R. Pajarola. Topology-preserving and controlled topology simplifying multi-resolution isosurface extraction. In Proceedings IEEE Visualization 2000, pages 259-266, 2000.Google Scholar
  41. 41.
    C. Giertsen, A. Halvorsen, and P.R. Flood. Graph-directed modelling from serial sections. The Visual Computer, 6:284-290, 1990.CrossRefGoogle Scholar
  42. 42.
    H. B. Griffiths. Surfaces. Cambridge University Press, 1976.Google Scholar
  43. 43.
    V. Guillemin and A. Pollack. Differential Topology. Englewood Cliffs, New Jersey, 1974.zbMATHGoogle Scholar
  44. 44.
    Attila Gyulassy, Vijay Natarajan, Valerio Pascucci, Peer-Timo Bremer, and Bernd Hamann. Topology-based simplification for feature extraction from 3d scalar fields. In Proceedings of IEEE Conference on Visualization, 2005.Google Scholar
  45. 45.
    T. Itoh and K. Koyamada. Automatic isosurface propagation using extrema graph and sorted boundary cell lists. IEEE Transactions on Visualization and Computer Graphics, 1:319-327, 1995.CrossRefGoogle Scholar
  46. 46.
    R. Jones. Connected filtering and segmentation using component trees. Computer Vision and Image Understanding, 75:215-228, 1999.CrossRefGoogle Scholar
  47. 47.
    C. Jun, D. Kim, D. Kim, H. Lee, J. Hwang, and T. Chang. Surface slicing algorithm based on topology transition. Computer-Aided Design, 33(11):825-838, 2001.CrossRefGoogle Scholar
  48. 48.
    D. B. Karron and J. Cox. Extracting 3D objects from volume data using digital morse theory. In CVRMed ’95: Proc. of the First Int. Conf. on Computer Vision, Virtual Reality and Robotics in Medicine, volume 905 of Lecture Notes in Computer Science, pages 481-486, London, UK, 1995. Springer-Verlag.Google Scholar
  49. 49.
    P. Magillo, E. Danovaro, L. De Floriani, L. Papaleo, and M. Vitali. Extracting terrain morphology: A new algorithm and a comparative evaluation. In 2nd International Conference on Computer Graphics Theory and Applications, March 2007.Google Scholar
  50. 50.
    A. Mangan and R. Whitaker. Partitioning 3D surface meshes using watershed segmentation. IEEE Transaction on Visualization and Computer Graphics, 5(4):308-321, 1999.CrossRefGoogle Scholar
  51. 51.
    M. Mantyla. An Introduction to Solid Modeling. Computer Science Press, 1987.Google Scholar
  52. 52.
    W. S. Massey. A basic course in algebraic topology. Springer-Verlag, New York, NY, USA, 1991.zbMATHGoogle Scholar
  53. 53.
    F. Meyer. Topographic distance and watershed lines. Signal Processing, 38:113-125, 1994.zbMATHCrossRefGoogle Scholar
  54. 54.
    J. Milnor. Morse Theory. Princeton University Press, New Jersey, 1963.zbMATHGoogle Scholar
  55. 55.
    Mesmoudi Mohammed Mostefa and De Floriani Leila. Morphology-based representations of discrete scalar fields. In In proceedings of the 2nd International Conference on Computer Graphics Theory. ISI Proceedings, March 2007.Google Scholar
  56. 56.
    L. R. Nackman. Two-dimensional critical point configuration graph. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6(4):442-450, 1984.zbMATHGoogle Scholar
  57. 57.
    V. J. Natarajan and N. Pascucci. Volumetric data analysis using Morse-Smale complexes. In Proceedings Shape Modeling International 2005, 2005.Google Scholar
  58. 58.
    X. Ni, M. Garland, and J. C. Hart. Fair morse functions for extracting the topo-logical structure of a surface mesh. ACM Transaction on Graphics, 23(3):613-622, 2004.CrossRefGoogle Scholar
  59. 59.
    L. Papaleo. Surface Reconstruction: online mosaicing and Modeling with uncertnaity. PhD thesis, Department of Computer Science - University of Genova, May 2004.Google Scholar
  60. 60.
    V. Pascucci. Topology diagrams of scalar fields in scientific visualization. In S. Rana, editor, Topological Data Structures for Surfaces, pages 121-129. John Wiley and Sons Ltd, 2004.Google Scholar
  61. 61.
    V. Pascucci. Generalization 3D Morse-Smale complexes. In Dagstuhl Seminar on Scientific Visualization, 2005 - to appear.Google Scholar
  62. 62.
    V. Pascucci and K. Cole-McLaughin. Efficient computation of the topology of the level sets. In Proceedings of Visualization 2002, pages 187-194. IEEE Press, 2002.Google Scholar
  63. 63.
    V. Pascucci and K. Cole-McLaughlin. Parallel computation of the topology of level sets. Algorithmica, 38:249-268, 2003.CrossRefMathSciNetGoogle Scholar
  64. 64.
    Valerio Pascucci. On the topology of the level sets of a scalar field. In Proceedings of the 13th Canadian Conference on Computational Geometry, pages 141-144, University of Waterloo, Ontario, Canada, 2001.Google Scholar
  65. 65.
    T. K. Peucker and D. H. Douglas. Detection of Surface-Specific Points by Local Parallel Processing of Discrete Terrain Elevation Data. Computer Graphics and Image Processing, 4:375-387, 1975.CrossRefGoogle Scholar
  66. 66.
    J. L. Pfaltz. Surface networks. Geographical Analysis, 8:77-93, 1976.Google Scholar
  67. 67.
    W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical recipes in c – second edition. Cambridge University Press, 1992.Google Scholar
  68. 68.
    G. Reeb. Sur les points singuli èrs d’une forme de Pfaff compl ètement int égrable ou d’une fonction num èrique. Comptes Rendu de l’Academie des Sciences, 222:847-849, 1946.zbMATHMathSciNetGoogle Scholar
  69. 69.
    J. Roerdink and A. Meijster. The watershed transform: definitions, algorithms, and parallelization strategies. Fundamenta Informaticae, 41:187-228, 2000.zbMATHMathSciNetGoogle Scholar
  70. 70.
    B. Schneider. Extraction of hierarchical surface networks from bilinear surface patches. Geographical Analysis, 37:244-263, 2005.CrossRefGoogle Scholar
  71. 71.
    B. Schneider and J. Wood. Construction of metric surface networks from raster-based DEMs. In S. Rana, editor, Topological Data Structures for Surfaces, pages 53-70. John Wiley and Sons Ltd, 2004.Google Scholar
  72. 72.
    Y. Shinagawa, T. L. Kunii, and Y. L. Kergosien. Surface coding based on Morse theory. Ieee Computer Graphics and Applications, 11:66-78, 1991.CrossRefGoogle Scholar
  73. 73.
    S. Smale. Morse inequalities for a dynamical system. Bulletin of American Mathematical Society, 66:43-49, 1960.zbMATHCrossRefMathSciNetGoogle Scholar
  74. 74.
    B.-S. Sohn and C. L. Bajaj. Time-varying contour topology. IEEE Transactions on Visualization and Computer Graphics, 12(1):14-25, 2006.CrossRefGoogle Scholar
  75. 75.
    P. Soille. Morphological Image Analysis: Principles and Applications. Springer-Verlag, Berlin and New York, 2004.Google Scholar
  76. 76.
    A. Szymczak. Subdomain aware contour trees and contour evolution in time-dependent scalar fields. In SMI ’05: Proceedings of Shape Modeling Applications 2005. IEEE Press, 2005.Google Scholar
  77. 77.
    S. Takahashi. Algorithms for Extracting Surface Topology from Digital Elevation Models, pages 31-51. John Wiley & Sons Ltd, 2004.Google Scholar
  78. 78.
    S. Takahashi, T. Ikeda, Y. Shinagawa, T. L. Kunii, and M. Ueda. Algorithms for extracting correct critical points and constructing topological graphs from discrete geographical elevation data. Computer Graphics Forum, 14:181-192, 1995.CrossRefGoogle Scholar
  79. 79.
    S. Takahashi, Y. Takeshima, and I. Fujishiro. Topological volume skeletonization and its application to transfer function design. Graphical Models, 66(1):24-49, 2004.zbMATHCrossRefGoogle Scholar
  80. 80.
    S. P. Tarasov and M. N. Vyalyi. Construction of contour trees in 3D in O(nlogn) steps. In SCG ’98: Proceedings of the 14th Annual Symposium on Computational Geometry 1998, pages 68-75. ACM Press, 1998.Google Scholar
  81. 81.
    H. Theisel and C. Roessl. Morphological representations of vector fields. In Shape Analysis and Structuring. Springer, 2007.Google Scholar
  82. 82.
    J. Toriwaki and T. Fukumura. Extraction of structural information from gray pictures. Computer Graphics and Image Processing, 7:30-51, 1978.CrossRefGoogle Scholar
  83. 83.
    M. van Kreveld, R.van Oostrum, C. Bajaj, V. Pascucci, and D. Schikore. Contour trees and small seed sets for isosurface traversal. In SCG ’97: Proceedings of the 13th Annual Symposium on Computational Geometry 1997, pages 212-220. ACM Press, 1997.Google Scholar
  84. 84.
    L. Vincent and S. Beucher. Introduction to the morphological tools for segmentation. Traitement d’images en microscopie balayage et en microanalyse par sonde lectronique, pages F1-F43, March 1990.Google Scholar
  85. 85.
    L. Vincent and P. Soille. Watershed in digital spaces: an efficient algorithm based on immersion simulation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(6):583-598, 1991.CrossRefGoogle Scholar
  86. 86.
    L. T. Watson, T. J. Laffey, and R. M. Haralick. Topographic classification of digital image intensity surfaces using generalized splines and the discrete cosine transformation. Computer Vision, Graphics, and Image Processing, 29:143-167, 1985.CrossRefGoogle Scholar
  87. 87.
    G. H. Weber, G. Schueuermann, H. Hagen, and B. Hamann. Exploring scalar fields using critical isovalues. In Proceedings IEEE Visualization 2002, pages 171-178. IEEE Computer Society, 2002.Google Scholar
  88. 88.
    G. H. Weber, G. Schueuermann, and B. Hamann. Detecting critical regions in scalar fields. In G.-P. Bonneau, S. Hahmann, and C. D. Hansen, editors, Proceedings Data Visualization Symposium, pages 85-94. ACM Press, New York, 2003.Google Scholar
  89. 89.
    G. W. Wolf. Topographic surfaces and surface networks. In S. Rana, editor, Topological Data Structures for Surfaces, pages 15-29. John Wiley and Sons Ltd, 2004.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Silvia Biasotti
    • 1
  • Leila De Floriani
    • 2
  • Bianca Falcidieno
    • 1
  • Laura Papaleo
    • 2
  1. 1.Istituto di Matematica Applicata e Tecnologie InformaticheItalian National Research CouncilGenovaItaly
  2. 2.Department of Computer Science (DISI)University of GenovaGenovaItaly

Personalised recommendations