Skip to main content

Clinical Development of Sorafenib (BAY 43–9006) VEGFR and RAF Inhibitor

  • Chapter
Tumor Angiogenesis
  • 1840 Accesses

Abstract

Sorafenib is a multi-kinase inhibitor with effects on the tumor cell and tumor vasculature that inhibit proliferation, promote cell death, and disrupt neo-angiogenesis. Originally identified as a Raf kinase inhibitor, sorafenib also inhibits VEGFR-1/-2/-3; PDGF-β receptor (PDGFR-β); Fms-like tyrosine kinase-3 (FLT-3); c-Kit protein (c-Kit); and RET receptor tyrosine kinases. Sorafenib has demonstrated potent anti-tumor activity in preclinical xenograft models of different tumor types by virtue of its anti-angiogenic, anti-proliferative and proapoptotic effects. This orally administered drug is well tolerated and received approval for the treatment of metastatic renal cell carcinoma (RCC) primarily based on a large international trial, the Treatment Approaches in Renal Cancer Global Evaluation Trial (TARGETs), in which 903 patients were randomized to receive sorafenib or placebo. At a planned interim analysis, patients treated with sorafenib had a lower risk for death than those treated with placebo. However, improvement in survival did not meet criteria for statistical significance. In a planned interim analysis of 769 patients, sorafenib significantly prolonged median progression-free survival compared with placebo (167 days vs 84 days; hazard ratio 0.44; P<0.000001). Sorafenib has also demonstrated early signs of clinical efficacy, alone or in combination regimens, in patients with advanced hepatocellular carcinoma (HCC) and melanoma. Ongoing phase III trials are currently being conducted to further evaluate sorafenib in HCC, melanoma, and non-small cell lung cancer. This chapter summarizes the discovery, preclinical findings, and clinical development of sorafenib in RCC and its potential use in other tumor types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou-Alfa GK et al (2006) Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol 24:4293–4300

    Article  PubMed  CAS  Google Scholar 

  • Alavi A, Hood JD, Frausto R, Stupack DG, Cheresh DA (2003) Role of Raf in vascular protection from distinct apoptotic stimuli. Science 301:94–96

    Article  PubMed  CAS  Google Scholar 

  • Alghisi GC, Ruegg C (2006) Vascular integrins in tumor angiogenesis: mediators and therapeutic targets. Endothelium 13:113–135

    Article  PubMed  CAS  Google Scholar 

  • Awada A et al (2004) A phase I study of BAY 43–9006, a novel Raf kinase and VEGFR inhibitor, in combination with taxotere in patients with advanced solid tumors. Eur J Cancer [Suppl] 2:114

    Google Scholar 

  • Awada A et al (2005) Phase I safety and pharmacokinetics of BAY 43–9006 administered for 21 days on/7 days off in patients with advanced, refractory solid tumours. Br J Cancer 92:1855–1861

    Article  PubMed  CAS  Google Scholar 

  • Baluk P, Hashizume H, McDonald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15:102–111

    Article  PubMed  CAS  Google Scholar 

  • Bayer (2006) Nexavar full prescribing information. http:// www.univgraph.com/bayer/inserts/nexavar.pdf

    Google Scholar 

  • Brauch H et al (2000) VHL alterations in human clear cell renal cell carcinoma: association with advanced tumor stage and a novel hot spot mutation. Cancer Res 60:1942–1948

    PubMed  CAS  Google Scholar 

  • Brose MS et al (2002) BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res 62:6997–7000

    PubMed  CAS  Google Scholar 

  • Bruix Jet al (2001) Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol 35:421–430

    Article  PubMed  CAS  Google Scholar 

  • Carlomagno F et al (2006) BAY 43–9006 inhibition of oncogenic RET mutants. J Natl Cancer Inst 98:326–334

    Article  PubMed  CAS  Google Scholar 

  • Carter CA et al (2007) Sorafenib is efficacious and tolerated in combination with cytotoxic or cytostatic agents in preclinical models of human non-small cell lung carcinoma. Cancer Chemother Pharmacol 59:183–195

    Article  PubMed  CAS  Google Scholar 

  • Chang DZ et al (2004) Clinical significance of BRAF mutations in metastatic melanoma. J Transi Med 2:46

    Article  CAS  Google Scholar 

  • Chang YS et al (2005) BAY 43–9006 (Sorafenib) inhibits ectopic and orthotopic growth of a murine model of renal adenocarcinoma (Renca) predominantly through inhibition of tumor angiogenesis. Clin Cancer Res 46:5831

    Google Scholar 

  • Chen HX (2004) Expanding the clinical development of bevacizumab. Oncologist 9[Suppl l]:27–35

    Article  PubMed  CAS  Google Scholar 

  • Clark JW, Eder JP, Ryan D, Lathia C, Lenz H-J (2005) Safety and pharmacokinetics of the dual action Raf kinase and vascular endothelial growth factor receptor inhibitor, BAY 43–9006, in patients with advanced, refractory solid tumors. Clin Cancer Res 11:5472–5480

    Article  PubMed  CAS  Google Scholar 

  • Cougot D, Neuveut C, Buendia MA (2005) HBV induced carcinogenesis. J Clin Virol 34[Suppl 1]:S75–S78

    Article  PubMed  CAS  Google Scholar 

  • D’Amore PA, Smith SR (1993) Growth factor effects on cells of the vascular wall: a survey. Growth Factors 8:61–75

    Article  PubMed  CAS  Google Scholar 

  • Davies H et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  PubMed  CAS  Google Scholar 

  • De Paulsen N et al (2001) Role of transforming growth factoralpha in von Hippel-Lindau (VHL)(-/-) clear cell renal carcinoma cell proliferation: a possible mechanism coupling VHL tumor suppressor inactivation and tumorigenesis. Proc Natl Acad Sci USA 98:1387–1392

    Article  PubMed  Google Scholar 

  • Dhanda R et al (2006) A comparison of quality of life and symptoms in kidney cancer patients receiving sorafenib versus placebo. J Clin Oncol 24:225s

    Google Scholar 

  • Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3:11–22

    Article  PubMed  CAS  Google Scholar 

  • Eisen T et al (2005) Phase I trial of BAY 43–9006 (sorafenib) combined with dacarbazine (DTIC) in metastatic melanoma patients. J Clin Oncol 23:7508

    Article  Google Scholar 

  • Eisen T et al (2006) Randomized phase III trial of sorafenib in advanced renal cell carcinoma (RCC): impact of crossover on survival. J Clin Oncol 24:4524

    Google Scholar 

  • Escudier B et al (2005) Randomized phase III trial of the multi-kinase inhibitor sorafenib (BAY 43–9006) in patients with advanced renal cell carcinoma (RCC). Eur J Cancer [Suppl] 3:226

    Google Scholar 

  • Esser S, Lampugnani MG, Corada M, Dejana E, Risau W (1998) Vascular endothelial growth factor induces VEcadherin tyrosine phosphorylation in endothelial cells. J Cell Sci 111:1853–1865

    PubMed  CAS  Google Scholar 

  • Ferrara N (2002) Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol 29:10–14

    PubMed  CAS  Google Scholar 

  • Figer A et al (2004) Phase I trial of BAY 43–9006 in combination with 5-fluorouracil (5-FU) and leucovorin (LCV) in patients with advanced refractory solid tumors. Ann Oncol15:87

    Google Scholar 

  • Flaherty KT et al (2004) Phase I/II trial of BAY 43–9006, carboplatin (C) and paclitaxel (P) demonstrates preliminary antitumor activity in the expansion cohort of patients with metastatic melanoma. J Clin Oncol 22:7507

    Google Scholar 

  • Flaherty KT et al (2006) Sorafenib combined with carboplatin and paclitaxel for metastatic melanoma: PFS and response versus B-Raf status. Proceedings of the 4th International Symposium on Targeted Anticancer Therapies (TAT), Amsterdam, The Netherlands, http://www.nddo. org/files/pdf/TAT_symp06_proceedings.pdf

    Google Scholar 

  • Folkman J (1992) The role of angiogenesis in tumor growth. Semin Cancer Biol 3:65–71

    PubMed  CAS  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  PubMed  CAS  Google Scholar 

  • Garnett MJ, Marais R (2004) Guilty as charged: B-RAF is a human oncogene. Cancer Cell 6:313–319

    Article  PubMed  CAS  Google Scholar 

  • Graells J et al (2004) Overproduction of VEGF concomitantly expressed with its receptors promotes growth and survival of melanoma cells through MAPK and PI3 K signaling. J Invest Dermatol 123:1151–1161

    Article  PubMed  CAS  Google Scholar 

  • Gunaratnam L et al (2003) Hypoxia inducible factor activates the transforming growth factor-alpha/epidermal growth factor receptor growth stimulatory pathway in VHL(-/-) renal cell carcinoma cells. J Biol Chem 278:44966–44974

    Article  PubMed  CAS  Google Scholar 

  • Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047–3055

    PubMed  CAS  Google Scholar 

  • Hingorani SR, Jacobetz MA, Robertson GP, Herlyn M, Tuveson DA (2003) Suppression of BRAF (V599E) in human melanoma abrogates transformation. Cancer Res 63:5198–5202

    PubMed  CAS  Google Scholar 

  • Hwang YH et al (2004) Over-expression of c-raf-1 proto-oncogene in liver cirrhosis and hepatocellular carcinoma. Hepatol Res 29:113–121

    Article  PubMed  CAS  Google Scholar 

  • Karasarides M et al (2004) B-RAF is a therapeutic target in melanoma. Oncogene 23:6292–6298

    Article  PubMed  CAS  Google Scholar 

  • Kasid U, Dritschilo A (2003) RAF antisense oligonucleotide as a tumor radiosensitizer. Oncogene 22:5876–5884

    Article  PubMed  CAS  Google Scholar 

  • Kertesz N et al (2006) The soluble extracellular domain of EphB4 (sEphB4) antagonizes EphB4-EphrinB2 interaction, modulates angiogenesis, and inhibits tumor growth. Blood 107:2330–2338

    Article  PubMed  CAS  Google Scholar 

  • Kim CW, Son KN, Choi SY, Kim J (2006) Human lactoferrin upregulates expression of KDR/Flk-1 and stimulates VEGF-A-mediated endothelial cell proliferation and migration. FEBS Lett 580:4332–4336

    Article  PubMed  CAS  Google Scholar 

  • Kolch W, Kotwaliwale A, Vass K, Janosch P (2002) The role of Raf kinases in malignant transformation. Exp Rev Mol Med 2002:1–18

    Article  Google Scholar 

  • Kupsch P et al (2005) Results of a phase I trial of sorafenib (BAY 43–9006) in combination with oxaliplatin in patients with refractory solid tumors, including colorectal cancer. Clin Colorectal Cancer 5:188–196

    Article  PubMed  Google Scholar 

  • Lampugnani MG, Orsenigo F, Gagliani MC, Tacchetti C, Dejana E (2006) Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J Cell Biol 174:593–604

    Article  PubMed  CAS  Google Scholar 

  • Lamuraglia M et al (2005) Doppier ultrasonography with perfusion software and contrast agent injection as a tool for early evaluation of metastatic renal cancers treated with the Raf kinase and VEGFR inhibitor: a prospective study. J Clin Oncol 23:209s

    Google Scholar 

  • Leibovich SJ et al (1987) Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature 329:630–632

    Article  PubMed  CAS  Google Scholar 

  • Leung SK, Ohh M (2002) Playing tag with HIF: the VHL story. J Biomed Biotechnol 2:131–135

    Article  PubMed  CAS  Google Scholar 

  • Levy AP et al (2006) Analysis of transcription and protein expression changes in the 786–0 human renal cell carcinoma tumor xenograft model in response to treatment with the multi-kinase inhibitor sorafenib (BAY 43–9006). Proc Am Assoc Cancer Res 47:213–214

    Google Scholar 

  • Liu L et al (2005) Sorafenib (BAY 43–9006) inhibits the Raf/ MEK/ERK pathway in hepatocellular carcinoma (HCC) cells and produces robust efficacy againts PLC/PRF/5 HCC tumors in mice. Poster presentation at AACR-NCIEORTC. Philadelphia, PA

    Google Scholar 

  • Lowinger TB, Riedl B, Dumas J, Smith RA (2002) Design and discovery of small molecules targeting raf-1 kinase. Curr Pharm Des 8:2269–2278

    Article  PubMed  CAS  Google Scholar 

  • Lyons JF, Wilhelm S, Hibner B, Bollag G (2001) Discovery of a novel Raf kinase inhibitor. Endocr Relat Cancer 8:219–225

    Article  PubMed  CAS  Google Scholar 

  • McPhillips F et al (2001) Association of c-Raf expression with survival and its targeting with antisense oligonucleotides in ovarian cancer. Br J Cancer 85:1753–1758

    Article  PubMed  CAS  Google Scholar 

  • Melillo RM et al (2005) The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells. J Clin Invest 115:1068–1081

    Article  PubMed  CAS  Google Scholar 

  • Moore M et al (2005) Phase I study to determine the safety and pharmacokinetics of the novel Raf kinase and VEGFR inhibitor BAY 43–9006, administered for 28 days on/7 days off in patients with advanced, refractory solid tumors. Ann Oncol 16:1688–1694

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee R, Bartlett JM, Krishna NS, Underwood MA, Edwards J (2005) Raf-1 expression may influence progression to androgen insensitive prostate cancer. Prostate 64:101–107

    Article  PubMed  CAS  Google Scholar 

  • O’Dwyer PJ, Rosen M, Gallagher M, Schwartz B, Flaherty KT (2005) Pharmacodynamic study of BAY 43–9006 in patients with metastatic renal cell carcinoma. J Clin Oncol 23:193s

    Google Scholar 

  • Ogawa K et al (2000) The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene 19:6043–6052

    Article  PubMed  CAS  Google Scholar 

  • Oka H et al (1995) Constitutive activation of mitogen-activated protein (MAP) kinases in human renal cell carcinoma. Cancer Res 55:4182–4187

    PubMed  CAS  Google Scholar 

  • O’Neill E, Rushworth L, Baccarini M, Kolch W (2004) Role of the kinase MST2 in suppression of apoptosis by the proto-oncogene product Raf-1. Science 306:2267–2270

    Article  PubMed  CAS  Google Scholar 

  • Padhani AR, Husband JE (2001) Dynamic contrast-enhanced MRI studies in oncology with an emphasis on quantification, validation and human studies. Clin Ra-diol 56:607–620

    Article  CAS  Google Scholar 

  • Panka DJ, Wang W, Atkins MB, Mier JW (2006) The Raf inhibitor BAY 43–9006 (Sorafenib) induces caspase-independent apoptosis in melanoma cells. Cancer Res 66:1611–1619

    Article  PubMed  CAS  Google Scholar 

  • Papetti M, Herman IM (2002) Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol 282:C947–C970

    PubMed  CAS  Google Scholar 

  • Pardali K, Moustakas A (2007) Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta 1775:21–62

    PubMed  CAS  Google Scholar 

  • Park YN, Kim YB, Yang KM, Park C (2000) Increased expression of vascular endothelial growth factor and angiogenesis in the early stage of multistep hepatocarcinogenesis. Arch Pathol Lab Med 124:1061–1065

    PubMed  CAS  Google Scholar 

  • Phelps ED, Updike DL, Bullen EC, Grammas P, Howard EW (2006) Transcriptional and posttranscriptional regulation of angiopoietin-2 expression mediated by IGF and PDGF in vascular smooth muscle cells. Am J Physiol Cell Physiol 290:C352–C361

    Article  PubMed  CAS  Google Scholar 

  • Rahmani M, Davis EM, Bauer C, Dent P, Grant S (2005) Apoptosis induced by the kinase inhibitor BAY 43–9006 in human leukemia cells involves downregulation of Mcl-1 through inhibition of translation. J Biol Chem 280:35217–35227

    Article  PubMed  CAS  Google Scholar 

  • Ratain MJ et al (2006) Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol 24:2505–2512

    Article  PubMed  CAS  Google Scholar 

  • Richly H et al (2004a) Results of a phase I trial of BAY 43–9006 in combination with doxorubicin in patients with refractory solid tumors. J Clin Oncol 23:207

    Google Scholar 

  • Richly H et al (2004b) Results of a phase I trial of BAY 43–9006 in combination with doxorubicin in patients with primary hepatic cancer. Ann Oncol 15:104

    Article  Google Scholar 

  • Rini BI (2005) VEGF-targeted therapy in metastatic renal cell carcinoma. Oncologist 10:191–197

    Article  PubMed  CAS  Google Scholar 

  • Sahni A, Khorana AA, Baggs RB, Peng H, Francis CW (2006) FGF-2 binding to fibrin(ogen) is required for augmented angiogenesis. Blood 107:126–131

    Article  PubMed  CAS  Google Scholar 

  • Salvatore G et al (2004) Analysis of BRAF point mutation and RET/PTC rearrangement refines the fine-needle aspiration diagnosis of papillary thyroid carcinoma. J Clin Endocrinol Metab 89:5175–5180

    Article  PubMed  CAS  Google Scholar 

  • Salvatore G et al (2006) B-RAF is a therapeutic target in aggressive thyroid carcinoma. Clin Cancer Res 12:1623–1629

    Article  PubMed  CAS  Google Scholar 

  • Satyamoorthy K et al (2003) Constitutive mitogen-activated protein kinase activation in melanoma is mediated by both BRAF mutations and autocrine growth factor stimulation. Cancer Res 63:756–759

    PubMed  CAS  Google Scholar 

  • Semino CE, Kamm RD, Lauffenburger DA (2006) Autocrine EGF receptor activation mediates endothelial cell migration and vascular morphogenesis induced by VEGF under interstitial flow. Exp Cell Res 312:289–298

    PubMed  CAS  Google Scholar 

  • Sharma A et al (2005) Mutant V599E B-Raf regulates growth and vascular development of malignant melanoma tumors. Cancer Res 65:2412–2421

    Article  PubMed  CAS  Google Scholar 

  • Siu LL et al (2006) Phase I/II trial of sorafenib and gemcitabine in advanced solid tumors and in advanced pancreatic cancer. Clin Cancer Res 12:144–151

    Article  PubMed  CAS  Google Scholar 

  • Smith K et al (2005) Silencing of epidermal growth factor receptor suppresses hypoxia-inducible factor-2-driven VHL-/renal cancer. Cancer Res 65:5221–5230

    Article  PubMed  CAS  Google Scholar 

  • Smith RA et al (2001) Discovery of heterocyclic ureas as a new class of raf kinase inhibitors: identification of a second generation lead by a combinatorial chemistry approach. Bioorg Med Chem Lett 11:2775–2778

    Article  PubMed  CAS  Google Scholar 

  • Steinbild S et al (2005) Phase I study of BAY 43–9006 (sorafenib), a Raf kinase and VEGFR inhibitor, combined with irinotecan (CPT-11) in advanced solid tumors. J Clin Oncol 23:3115

    Google Scholar 

  • Streit M, Detmar M (2003) Angiogenesis, lymphangiogenesis, and melanoma metastasis. Oncogene 22:3172–3179

    Article  PubMed  CAS  Google Scholar 

  • Strumberg D et al (2005) Phase I clinical and pharmacokinetic study of the novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43–9006 in patients with advanced refractory solid tumors. J Clin Oncol 23:965–972

    Article  PubMed  CAS  Google Scholar 

  • Strumberg D et al (2006) Pooled safety analysis of BAY 43–9006 (sorafenib) monotherapy in patients with advanced solid tumours: Is rash associated with treatment out come? Eur J Cancer 42:548–556

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Shibuya M (2005) The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond) 109:227–241

    Article  CAS  Google Scholar 

  • Wan PT et al (2004) Mechanism of activation of the RAFERK signaling pathway by oncogenic mutations of BRAF. Cell 116:855–867

    Article  PubMed  CAS  Google Scholar 

  • Wary KK, Thakker GD, Humtsoe JO, Yang J (2003) Analysis of VEGF-responsive genes involved in the activation of endothelial cells. Mol Cancer 2:25

    Article  PubMed  Google Scholar 

  • Wilhelm SM et al (2004) BAY 43–9006 exhibits broad spectrum oral anti-tumor activity and targets the Raf/MEK/ ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64:7099–7109

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Ma J, Han JD, Wang N, Chen YG (2006) Distinct regulation of gene expression in human endothelial cells by TGF-beta and its receptors. Microvasc Res 71:12–19

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi R et al (1998) Expression of vascular endothelial growth factor in human hepatocellular carcinoma. Hepatology 28:68–77

    Article  PubMed  CAS  Google Scholar 

  • Yamaoka-Tojo M et al (2006) IQGAP1 mediates VE-cadherin-based cell-cell contacts and VEGF signaling at adherence junctions linked to angiogenesis. Arterioscler Thromb Vasc Biol 26:1991–1997

    Article  PubMed  CAS  Google Scholar 

  • Yu C et al (2005) The role of Mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43–9006. Oncogene 24:6861–6869

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Voliotis, D., Dumas, J. (2008). Clinical Development of Sorafenib (BAY 43–9006) VEGFR and RAF Inhibitor. In: Marmé, D., Fusenig, N. (eds) Tumor Angiogenesis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33177-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33177-3_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33176-6

  • Online ISBN: 978-3-540-33177-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics