Skip to main content

Vascular Endothelial Growth Factor Receptor Antibodies for Anti-Angiogenic Therapy

  • Chapter
Tumor Angiogenesis

Abstract

Vascular endothelial cell growth factors (VEGFs) and their receptors are key molecules in the development and maintenance of the vascular and lymphatic systems in mammals. Inappropriate regulation of vascular growth is associated with various pathological states, especially with tumor growth. As cancer growth is supported in large part by excessive tumor-induced vascularization, interference with VEGF signaling has emerged as an important anti-angiogenic strategy to combat cancer. Here we review the state of the art with regard to one powerful such approach — the efficient blockage of VEGF receptor function with fully human monoclonal antibodies. There are three types of VEGF receptors: VEGFR2 and VEGFR3, which are expressed highly selectively on vascular and lymphatic endothelial cells, respectively, and VEGFR1, which is expressed in many cell types, including endothelial cells, inflammatory cells, and many tumor cells. Antibodies against each of these receptors can interfere with VEGF/VEGF receptor interactions in a highly receptor-specific manner, which prevents VEGF-induced signaling in VEGF receptor-positive cells, and results in impairment of essential functions of endothelial and other cells that support tumor growth and, ultimately, by tumor growth inhibition. The mechanisms of action of these antibodies differ widely, reflecting the unique distribution and biological roles of each of the VEGF receptors. There is abundant preclinical evidence that antibody-mediated VEGF receptor blockage can cause powerful inhibition of tumor growth in animals. However, as tumor growth control is achieved by mechanisms that are primarily cytostatic, cessation of treatment causes tumor re-growth. A preferred treatment modality is, therefore, to combine antibody treatment with cytotoxic (chemo- or radiation) therapy. Various forms of such combination therapy have been successful in treating many types of experimental tumors, even under conditions when single-agent treatments are ineffective. Anti-VEGFR1 and -R2 antibodies are currently being investigated as cancer therapeutics in clinical trials. In view of the potential therapeutic usefulness of these antibodies we also discuss possible advantages and disadvantages of anti-VEGFR antibodies and other approaches of VEGF signaling inhibition [antibodies against VEGF (Avastin®), small-molecule kinase inhibitors] with respect to differential efficacy and adverse effect profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aase K, von Euler G, Li X, Ponten A, Thoren P, Cao R, Cao Y, Oloffson B, Gebre-Medhin S, Pekay M, Alitalo K (2001) Vascular endothelial growth factor B-deficient mice display an atrial conduction defect. Circulation 104:358–364

    PubMed  CAS  Google Scholar 

  • Alitalo K, Carmeliet P (2002) Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1:219–227

    Article  PubMed  CAS  Google Scholar 

  • Alitalo K, Tammela T, Petrova T (2005) Lymphangiogenesis in development and human disease. Nature 438:946–953

    Article  PubMed  CAS  Google Scholar 

  • Autiero M, Waltenberger J, Communi D, Kranz A, Moons L, Lambrechts D, Kroll J, Plaisance S, De Mol M, Bono F, Kliche S, Fellbrich G, Ballmer-Hofer K, Maglione D, MayrBeyrle U, Dewerchin M, Dombrowski S, Stanimirovic D, Van Hummelen P, Dehio C, Hicklin D, Persico G, Herbert J, Communi D, Shibuya M, Collen D, Conway E, Carmeliet P (2003) Role of P1GF in the intra-and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 9:936–943

    Article  PubMed  CAS  Google Scholar 

  • Backer M, Backer J (2001) Targeting endothelial cells overexpressing VEGFR-2: selective toxicity of Shiga-like toxin-VEGF fusion proteins. Bioconjug Chem 12:1066–1073

    Article  PubMed  CAS  Google Scholar 

  • Backer M, Aloise R, Przekop K, Stoletov K, Backer J (2002) Molecular vehicles for targeted drug delivery. Bioconjug Chem 13:462–467

    Article  PubMed  CAS  Google Scholar 

  • Backer M, Elliot J, Gaynutdinov T, Backer J (2004) Assembly of targeting complexes driven by a single chain antibody. J Immunol Methods 289:37–45

    Article  PubMed  CAS  Google Scholar 

  • Baluk P, Tammela T, Ator E, Lyubynska N, Achen M, Hicklin D, Jeltsch M, Petrova T, Pytowski B, Stacker S, Yla-Herttuala S, Jackson D, Alitalo K, McDonald D (2005) Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J Clin Invest 115:247–257

    Article  PubMed  CAS  Google Scholar 

  • Bellomo D, Headrick J, Silins G, Paterson C, Thomas P, Gartside M, Mould A, Cahill M, Tonks I, Grimmond S, Townson S, Wells C, Little M, Cummings M, Hayward N, Kay G (2000) Mice lacking the vascular endothelial growth factor B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ Res 86:E29–E35

    PubMed  CAS  Google Scholar 

  • Boldicke T, Tesar M, Griesel C, Rohde M, Grone HJ, Waltenberger J, Kollet O, Lapidot T, Yayon A, Weich H (2001) Anti-VEGFR-2 scFvs for cell isolation. Single-chain antibodies recognizing the human vascular endothelial growth factor receptor-2 (VEGFR-2/flk-1) on the surface of primary endothelial cells and preselected CD34+ cells from cord blood. Stem Cells 19:24–36

    Article  PubMed  CAS  Google Scholar 

  • Boldicke T, Weber H, Mueller P, Barleon B, Bernai M (2005) Novel highly efficient intrabody mediates complete inhibition of cell surface expression of the human vascular endothelial growth factor receptor-2 (VEGFR-2/KDR). J Immunol Methods 300:146–159

    Article  PubMed  CAS  Google Scholar 

  • Bruns C, Liu W, Davis D, Shaheen, McConkey D, Wilson M, Bucana C, Hicklin D, Ellis L (2000) Vascular endothelial growth factor is an in vivo survival factor for tumor endothelium in a murine model of colorectal carcinoma liver metastases. Cancer 89:488–499

    Article  PubMed  CAS  Google Scholar 

  • Bruns C, Shrader M, Harbison M, Portera C, Solorzano C, Jauch K, Hicklin D, Radinsky R, Ellis L (2002) Effect of the vascular endothelial growth factor receptor-2 antibody DC101 plus gemcitabine on growth, metastasis and angiogenesis of human pancreatic cancer growing orthotopically in nude mice. Int J Cancer 102:101–108

    Article  PubMed  CAS  Google Scholar 

  • Cai J, Ahmad S, Jiang W, Huang J, Kontos C, Boulton M, Ahmed A (2003) Activation of vascular endothelial growth factor receptor-1 sustains angiogenesis and Bcl-2 expression via the phosphatidylinositol 3-kinase pathway in endothelial cells. Diabetes 52:2959–2968

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, Wu Y, Bono F, Devy L, Beck H, Scholz D, Acker T, DiPalma T, Dewerchin M, Noel A, Stalmans I, Barra A, Blacher S, Vandendriessche T, Ponten A, Eriksson U, Plate K, Foidart J, Schaper W, Charnock-Jones D, Hicklin D, Herbert JM, Collen D, Persico M (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7:575–583

    Article  PubMed  CAS  Google Scholar 

  • Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8:299–309

    Article  PubMed  CAS  Google Scholar 

  • Davis D, Inoue K, Dinney C, Hicklin D, Abbruzzese J, McConkey D (2004) Regional effects of an antivascular endothelial growth factor receptor monoclonal antibody on receptor phosphorylation and apoptosis inhuman 253 J B-V bladder cancer xenografts. Cancer Res 64:4601–4610

    Article  PubMed  CAS  Google Scholar 

  • De Bandt M, Ben Mahdi MH, Ollivier V, Grossin M, Dupuis M, Gaudry M, Bohlen P, Lipson K, Rice A, Wu Y, Gougerot-Pocidalo M, Pasquier C (2003) Blockade of vascular endothelial growth factor receptor I (VEGF-RI), but not VEGF-RII, suppresses joint destruction in the K/BxN model of rheumatoid arthritis. J Immunol 171:4853–4859

    PubMed  Google Scholar 

  • Dias S, Hattori K, Zhu Z, Heissig B, Choy M, Lane W, Wu Y, Chadburn A, Hyjek E, Gill M, Hicklin D, Witte L, Moore M, Rafii S (2000) Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J Clin Invest 106:511–521

    PubMed  CAS  Google Scholar 

  • Dias S, Hattori K, Heissig B, Zhu Z, Wu Y, Witte L, Hicklin D, Tateno M, Bohlen P, Moore MA, Rafii S (2001) Inhibition of both paracrine and autocrine VEGF/ VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias. Proc Natl Acad Sci USA 98:10857–10862

    Article  PubMed  CAS  Google Scholar 

  • Fan F, Wey J, McCarty M, Belcheva A, Liu W, Bauer T, Somcio R, Wu Y, Hooper A, Hicklin D, Ellis L (2005) Expression and function of vascular endothelial growth factor receptor-1 on human colorectal cancer cells. Oncogene 24:2647–2653

    Article  PubMed  CAS  Google Scholar 

  • Fenton B, Paoni S, Ding I (2004a) Effect of VEGF receptor-2 antibody on vascular function and oxygenation in spontaneous and transplanted tumors. Radiother Oncol 72:221–230

    Article  PubMed  CAS  Google Scholar 

  • Fenton B, Paoni S, Ding I (2004b) Pathophysiological effects of vascular endothelial growth factor receptor-2-blocking antibody plus fractionated radiotherapy on murine mammary tumors. Cancer Res 64:5712–5719

    Article  PubMed  CAS  Google Scholar 

  • Fernandez M, Vizzutti F, Garcia-Pagan J, Rodes J, Bosch J (2004) Anti-VEGF receptor-2 monoclonal antibody prevents portal-systemic collateral vessel formation in portal hypertensive mice. Gastroenterology 126:886–894

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25:581–611

    Article  PubMed  CAS  Google Scholar 

  • Fiedler W, Graeven U, Ergun S, Verago S, Kilic N, Stockschlader M, Hossfeld D (1997) Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood 89:1870–1875

    PubMed  CAS  Google Scholar 

  • Fragoso R, Pereira T, Wu Y, Zhu Z, Cabecadas J, Dias S (2006) VEGFR-1 (FLT-1) activation modulates acute lymphoblastic leukemia localization and survival within the bone marrow, determining the onset of extramedullary disease. Blood 107:1608–1616 (erratum in: Blood 2006; 107:3057)

    Article  PubMed  CAS  Google Scholar 

  • Gong H, Pottgen C, Stuben G, Havers W, Stuschke M, Schweigerer L (2003) Arginine deiminase and other antiangiogenic agents inhibit unfavorable neuroblastoma growth: potentiation by irradiation. Int J Cancer 106:723–728

    Article  PubMed  CAS  Google Scholar 

  • Gordon M, Cunningham D (2005) Managing patients treated with bevacizumab combination therapy. Oncology 69[Suppl 3]:25–33

    Article  PubMed  CAS  Google Scholar 

  • Gothert J, Gustin S, van Eekelen J, Schmidt U, Hall M, Jane S, Green A, Gottgens B, Izon D, Begley C (2004) Genetically tagging endothelial cells in vivo: bone marrow-derived cells do not contribute to tumor endothelium. Blood 104:1769–1777

    Article  PubMed  CAS  Google Scholar 

  • Hansen-Algenstaedt N, Stoll B, Padera T, Dolmans D, Hicklin D, Fukumura D, Jain R (2000) Tumor oxygenation in hormone-dependent tumors during vascular endothelial growth factor receptor-2 blockade, hormone ablation, and chemotherapy. Cancer Res 60:4556–4560 (erratum in: Cancer Res 2001; 61:6304)

    PubMed  CAS  Google Scholar 

  • Hattori K, Heissig B, Wu Y, Dias S, Tejada R, Ferris B, Hicklin D, Zhu Z, Bohlen P, Witte L, Hendrikx J, Hackett N, Crystal R, Moore M, Werb Z, Lyden D, Rafii S (2002) Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med 8:841–849

    PubMed  CAS  Google Scholar 

  • He Y, Karpanen T, Alitalo K (2004) Role of lymphangiogenic factors in tumor metastasis. Biochim Biophys Acta 1654:3–12

    PubMed  CAS  Google Scholar 

  • Heissig B, Rafii S, Akiyama H, Ohki Y, Sato Y, Rafael T, Zhu Z, Hicklin D, Okumura K, Ogawa H, Werb Z, Hattori K (2005) Low-dose irradiation promotes tissue revascularization through VEGF release from mast cells and MMP-9-mediated progenitor cell mobilization. J Exp Med 202:739–750

    Article  PubMed  CAS  Google Scholar 

  • Hicklin D, Ellis L (2001) Effects of an antibody to vascular endothelial growth factor receptor-2 on survival, tumor vascularity, and apoptosis in a murine model of colon carcinomatosis. Int J Oncol 18:221–226

    PubMed  Google Scholar 

  • Hicklin D, Ellis L (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–1027

    Article  PubMed  CAS  Google Scholar 

  • Hiratsuka S, Nakamura K, Iwai S, Murakami M, Itoh T, Kijima H, Shipley J, Senior R, Shibuya M (2002) MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2:289–300

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Slaton J, Davis D, Hicklin D, McConkey D, Karashima T, Radinsky R, Dinney C (2000) Treatment of human metastatic transitional cell carcinoma of the bladder in a murine model with the anti-vascular endothelial growth factor receptor monoclonal antibody DC101 and paclitaxel. Clin Cancer Res 6:2635–2643

    PubMed  CAS  Google Scholar 

  • Izumi Y, Di Tomaso E, Hooper A, Huang P, Huber J, Hicklin D, Fukumura D, Jain R, Suit H (2003) Responses to antiangiogenesis treatment of spontaneous autochthonous tumors and their isografts. Cancer Res 63:747–751

    PubMed  CAS  Google Scholar 

  • Jain R, Duda D, Clark J, Loeffler J (2006) Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 3:24–40

    Article  PubMed  CAS  Google Scholar 

  • Jendreyko N, Popkov M, Beerli R, Chung J, McGavern D, Rader C, Barbas C (2003) Intradiabodies: bispecific, tetravalent antibodies for the simultaneous functional knockout of two cell surface receptors. J Biol Chem 278:47812–47819

    Article  PubMed  CAS  Google Scholar 

  • Jimenez X, Lu D, Brennan L, Persaud K, Liu M, Miao H, Witte L, Zhu Z (2005) A recombinant, fully human, bispecific antibody neutralizes the biological activities mediated by both vascular endothelial growth factor receptors 2 and 3. Mol Cancer Ther 4:427–434

    PubMed  CAS  Google Scholar 

  • Jin Z, Ueba H, Tanimoto T, Lungu A, Frame M, Berk B (2003) Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase. Circ Res 93:354–363

    Article  PubMed  CAS  Google Scholar 

  • Jung Y, Mansfield P, Akagi M, Takeda A, Liu W, Bucana C, Hicklin D, Ellis L (2002) Effects of combination anti-vascular endothelial growth factor receptor and anti-epidermal growth factor receptor therapies on the growth of gastric cancer in a nude mouse model. Eur J Cancer 38:1133–1140

    Article  PubMed  CAS  Google Scholar 

  • Jussila L, Alitalo K (2002) Vascular growth factors and lymphangiogenesis. Physiol Rev 82:673–700

    PubMed  CAS  Google Scholar 

  • Kanno S, Oda N, Abe M, Terai Y, Ito M, Shitara K, Tabayashi K, Shibuya M, Sato Y (2000) Roles of two VEGF receptors, Flt-1 and KDR, in the signal transduction of VEGF effects in human vascular endothelial cells. Oncogene 19:2138–2146

    Article  PubMed  CAS  Google Scholar 

  • Karpanen T, Egeblad M, Karkkainen M, Kubo H, Yla-Herttuala S, Jaattela M, Alitalo K (2001) Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 61:1786–1790 Kiessling F, Farhan N, Lichy M, Vosseier S, Heilmann M

    PubMed  CAS  Google Scholar 

  • Krix M, Bohlen P, Miller D, Mueller M, Semmler W, Fusenig N (2004) Dynamic contrast-enhanced magnetic resonance imaging rapidly indicates vessel regression in human squamous cell carcinomas grown in nude mice caused by VEGF receptor 2 blockade with DC101. Neoplasia 6:213–223

    Article  PubMed  CAS  Google Scholar 

  • Kitamoto Y, Takeya M, Tokunaga H, Tomita K (2001) Glomerular endothelial cells are maintained by vascular endothelial growth factor in the adult kidney. Tohoku J Exp Med 195:43–54

    Article  PubMed  CAS  Google Scholar 

  • Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin D, Bohlen P, Kerbel R (2000) Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 105:R15–R24

    Article  PubMed  CAS  Google Scholar 

  • Klement G, Huang P, Mayer B, Green SK, Man S, Bohlen P, Hicklin D, Kerbel R (2002) Differences in therapeutic indexes of combination metronomic chemotherapy and an anti-VEGFR-2 antibody in multidrug-resistant human breast cancer xenografts. Clin Cancer Res 8:221–232

    PubMed  CAS  Google Scholar 

  • Kontermann R (2004) Intrabodies as therapeutic agents. Methods 34:163–170

    Article  PubMed  CAS  Google Scholar 

  • Koolwijk P, Peters E, van der Vecht B, Hornig C, Weich H, Alitalo K, Hicklin D, Wu Y, Witte L, van Hinsbergh V (2001) Involvement of VEGFR-2 (kdr/flk-1) but not VEGFR-1 (flt-1) in VEGF-A and VEGF-C-induced tube formation by human microvascular endothelial cells in fibrin matrices in vitro. Angiogenesis 4:53–60

    Article  PubMed  CAS  Google Scholar 

  • Kou R, SenBanerjee S, Jain M, Michel T (2005) Differential regulation of vascular endothelial growth factor receptors (VEGFR) revealed by RNA interference: interactions of VEGFR-1 and VEGFR-2 in endothelial cell signaling. Biochemistry 44:15064–15073

    Article  PubMed  CAS  Google Scholar 

  • Kozin S, Boucher Y, Hicklin D, Bohlen P, Jain R, Suit H (2001) Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumor xenografts. Cancer Res 61:39–44

    PubMed  CAS  Google Scholar 

  • Krix M, Kiessling F, Vosseler S, Farhan N, Mueller M, Bohlen P, Fusenig N, Delorme S (2003) Sensitive noninvasive monitoring of tumor perfusion during antiangiogenic therapy by intermittent bolus-contrast power Doppler sonography. Cancer Res 63:8264–8270

    PubMed  CAS  Google Scholar 

  • Kubo H, Fujiwara T, Jussila L, Hashi H, Ogawa M, Shimizu K, Awane M, Sakai Y, Takabayashi A, Alitalo K, Yamaoka Y, Nishikawa S (2000) Involvement of vascular endothelial growth factor receptor-3 in maintenance of integrity of endothelial cell lining during tumor angiogenesis. Blood 96:546–553

    PubMed  CAS  Google Scholar 

  • Kubo H, Cao R, Brakenhielm E, Makinen T, Cao Y, Alitalo K (2002) Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factorsinduced lymphangiogenesis in mouse cornea. Proc Natl Acad Sci USA 99:8868–8873

    Article  PubMed  CAS  Google Scholar 

  • Kunkel P, Ulbricht U, Bohlen P, Brockmann MA, Fillbrandt R, Stavrou D, Westphal M, Lamszus K (2001) Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res 61:6624–6628

    PubMed  CAS  Google Scholar 

  • Kunstfeld R, Hirakawa S, Hong YK, Schacht V, Lange-Asschenfeldt B, Velasco P, Lin C, Fiebiger E, Wei X, Wu Y, Hicklin D, Bohlen P, Detmar M (2004) Induction of cutaneous delayed-type hypersensitivity reactions in VEGFA transgenic mice results in chronic skin inflammation associated with persistent lymphatic hyperplasia. Blood 104:1048–1057

    Article  PubMed  CAS  Google Scholar 

  • Lamszus K, Brockmann M, Eckerich C, Bohlen P, May C, Mangold U, Fillbrandt R, Westphal M (2005) Inhibition of glioblastoma angiogenesis and invasion by combined treatments directed against vascular endothelial growth factor receptor-2, epidermal growth factor receptor, and vascular endothelial-cadherin. Clin Cancer Res 11:4934–4940

    Article  PubMed  CAS  Google Scholar 

  • Le Bras B, Barallobre MJ, Homman-Ludiye J, Ny A, Wyns S, Tammela T, Haiko P, Karkkainen MJ, Yuan L, Muriel MP, Chatzopoulou E, Breant C, Zalc B, Carmeliet P, Alitalo K, Eichmann A, Thomas J (2006) VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain. Nat Neurosci 9:340–348

    Article  PubMed  CAS  Google Scholar 

  • Lewis C, Murdoch C (2005) Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. Am J Pathol 167:627–635

    PubMed  CAS  Google Scholar 

  • Lewis C, Pollard J (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66:605–612

    Article  PubMed  CAS  Google Scholar 

  • Li J, Huang S, Armstrong E, Fowler JF, Harari P (2005) Angiogenesis and radiation response modulation after vascular endothelial growth factor receptor-2 (VEGFR2) blockade. Int J Radiat Oncol Biol Phys 62:1477–1485

    Article  PubMed  CAS  Google Scholar 

  • Li L, Wartchow C, Danthi S, Shen Z, Dechene N, Pease J, Choi H, Doede T, Chu P, Ning S, Lee D, Bednarski M, Knox S (2004a) A novel antiangiogenesis therapy using an integrin antagonist or anti-Flk-1 antibody coated 90Y-labeled nanoparticles. Int J Radiat Oncol Biol Phys 58:1215–1227

    PubMed  CAS  Google Scholar 

  • Li R, Xiong D, Shao X, Liu J, Xu Y, Xu Y, Liu H, Zhu Z, Yang C (2004b) Production of neutralizing monoclonal antibody against human vascular endothelial growth factor receptor II. Acta Pharmacol Sin 25:1292–1298

    PubMed  CAS  Google Scholar 

  • List A, Glinsmann-Gibson B, Stadheim C, Meuillet E, Bellamy W, Powis G (2004) Vascular endothelial growth factor receptor-1 and receptor-2 initiate a phosphatidylinositide 3-kinase-dependent clonogenic response in acute myeloid leukemia cells. Exp Hematol 32:526–535

    Article  PubMed  CAS  Google Scholar 

  • Lu D, Russie P, Pytowski B, Persaud K, Bohlen P, Witte L, Zhu Z (2000) Identification of the residues in the extracellular region of KDR important for interaction with vascular endothelial growth factor and neutralizing anti-KDR antibodies. J Biol Chem 275:14321–14330

    Article  PubMed  CAS  Google Scholar 

  • Lu D, Jimenez X, Zhang H, Wu Y, Bohlen P, Witte L, Zhu Z (2001) Complete inhibition of vascular endothelial growth factor (VEGF) activities with a bifunctional diabody directed against both VEGF kinase receptors, fmslike tyrosine kinase receptor and kinase insert domaincontaining receptor. Cancer Res 61:7002–7008

    PubMed  CAS  Google Scholar 

  • Lu D, Jimenez X, Zhang H, Bohlen P, Witte L, Zhu Z (2002a) Selection of high affinity human neutralizing antibodies to VEGFR2 from a large antibody phage display library for antiangiogenesis therapy. Int J Cancer 97:393–399

    Article  PubMed  CAS  Google Scholar 

  • Lu D, Jimenez X, Zhang H, Bohlen P, Witte L, Zhu Z (2002b) Fab-scFv fusion protein: an efficient approach to production of bispecific antibody fragments. J Immunol Methods 267:213–226

    Article  PubMed  CAS  Google Scholar 

  • Lu D, Jimenez X, Zhang H, Atkins A, Brennan L, Balderes P, Bohlen P, Witte L, Zhu Z (2003a) Di-diabody: a novel tetravalent bispecific antibody molecule by design. J Immunol Methods 279:219–232

    Article  PubMed  CAS  Google Scholar 

  • Lu D, Shen J, Vil M, Zhang H, Jimenez X, Bohlen P, Witte L, Zhu Z (2003b) Tailoring in vitro selection for a picomolar affinity human antibody directed against vascular endothelial growth factor receptor 2 for enhanced neutralizing activity. J Biol Chem 278:43496–43507

    Article  PubMed  CAS  Google Scholar 

  • Lu D, Zhang H, Koo H, Tonra J, Balderes P, Prewett M, Corcoran E, Mangalampalli V, Bassi R, Anselma D, Patel D, Kang X, Ludwig DL, Hicklin D, Bohlen P, Witte L, Zhu Z (2005) A fully human recombinant IgG-like bispecific antibody to both the epidermal growth factor receptor and the insulin-like growth factor receptor for enhanced antitumor activity. J Biol Chem 280:19665–19672

    Article  PubMed  CAS  Google Scholar 

  • Ludwig D, Witte L, Hicklin D, Prewett M, Bassi R, Burtrum D, Pereira D, Jimenez X, Fox F, Saxena B, Zhou Q, Ma Y, Kang X, Patel D, Barry M, Russie P, Zhu Z, Russell D, Peterson W, Jury T, Gaitan-Gaitan F, Moran D, Delannay X, Storrs B, Tou J, Zupec M, Gustafson K, McIntyre J, Tarnowski J, Bohlen P (2004) Conservation of receptor antagonist antitumor activity by epidermal growth factor receptor antibody expressed in transgenic corn seed. Hum Antibodies 13:81–90

    PubMed  CAS  Google Scholar 

  • Luttun A, Tjwa M, Moons L, Wu Y, Angelillo-Scherrer A, Liao F, Nagy J, Hooper A, Priller J, de Klerck B, Compernolle V, Daci E, Bohlen P, Dewerchin M, Herbert J, Fava R, Matthys P, Carmeliet G, Collen D, Dvorak H, Hicklin D, Carmeliet P (2002) Revascularization of ischemic tissues by P1GF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 8:831–840

    PubMed  CAS  Google Scholar 

  • Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett N, Crystal R, Moore M, Hajjar K, Manova K, Benezra R, Rafii S (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7:1194–1201

    Article  PubMed  CAS  Google Scholar 

  • Man S, Bocci G, Francia G, Green S, Jothy S, Hanahan D, Bohlen P, Hicklin D, Bergers G, Kerbel R (2002) Antitumor effects in mice of low-dose (metronomic) cyclophosphamide administered continuously through the drinking water. Cancer Res 62:2731–2735

    PubMed  CAS  Google Scholar 

  • Masood R, Kundra A, Zhu S, Xia G, Scalia P, Smith D, Gill P (2003) Malignant mesothelioma growth inhibition by agents that target the VEGF and VEGF-C autocrine loops. Int J Cancer 104:603–610

    Article  PubMed  CAS  Google Scholar 

  • McLeod D, Taomoto M, Cao J, Zhu Z, Witte L, Lutty G (2002) Localization of VEGF receptor-2 (KDR/Flk-1) and effects of blocking it in oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 43:474–482

    PubMed  Google Scholar 

  • Miller D, Vosseler S, Mirancea N, Hicklin D, Bohlen P, Volcker H, Holz F, Fusenig N (2005) Rapid vessel regression, protease inhibition, and stromal normalization upon short-term vascular endothelial growth factor receptor 2 inhibition in skin carcinoma heterotransplants. Am J Pathol 167:1389–1403

    PubMed  CAS  Google Scholar 

  • Neagoe PE, Lemieux C, Sirois MG(2005) Vascular endothelial growth factor (VEGF)-A165-induced prostacyclin synthesis requires the activation of VEGF receptor-1 and-2 heterodimer. J Biol Chem 280:9904–9912

    Article  PubMed  CAS  Google Scholar 

  • Nilsson I, Rolny C, Wu Y, Pytowski B, Hicklin D, Alitalo K, Claesson-Welsh L, Wennstrom S (2004) Vascular endothelial growth factor receptor-3 in hypoxia-induced vascular development. FASEB J 18:1507–1515

    Article  PubMed  CAS  Google Scholar 

  • Ohki Y, Heissig B, Sato Y, Akiyama H, Zhu Z, Hicklin D, Shimada K, Ogawa H, Daida H, Hattori K, Ohsaka A (2005) Granulocyte colony-stimulating factor promotes neovascularization by releasing vascular endothelial growth factor from neutrophils. FASEB J 19:2005–2007

    PubMed  CAS  Google Scholar 

  • Oloffson B, Pajusola K, Kaipainen A, von Euler G, Joukov V, Saksela O, Orpana A, Petterson R, Alitalo K, Eriksson U (1996) Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc Natl Acad Sci USA 93:2576–2581

    Article  Google Scholar 

  • Pauli S, Tang H, Wang J, Bohlen P, Posser R, Hartman T, Sauer M, Kitajewski J, Zimmermann R (2005) The vascular endothelial growth factor (VEGF)/VEGF receptor 2 pathway is critical for blood vessel survival in corpora lutea of pregnancy in the rodent. Endocrinology 146:1301–1311

    Article  PubMed  CAS  Google Scholar 

  • Patila T, Ikonen T, Rutanen J, Ahonen A, Lommi J, Lappalainen K, Krogerus L, Ihlberg L, Partanen T, Lahteenoja L, Virtanen K, Alitalo K, Yla-Herttuala S, Harjula A (2006) Vascular endothelial growth factor C-induced collateral formation in a model of myocardial ischemia. J Heart Lung Transplant 25:206–213

    Article  PubMed  Google Scholar 

  • Paz K, Brennan L, Iacolina M, Doody J, Hadari Y, Zhu Z (2005) Human single-domain neutralizing intrabodies directed against Etk kinase: a novel approach to impair cellular transformation. Mol Cancer Ther 4:1801–1809

    Article  PubMed  CAS  Google Scholar 

  • Pedersen A, Buus S, Claesson M (2005) Treatment of transplanted CT26 tumour with dendritic cell vaccine in combination with blockade of vascular endothelial growth factor receptor 2 and CTLA-4. Cancer Lett May 28 (Epub ahead of print)

    Google Scholar 

  • Pepper MS, Tille JC, Nisato R, Skobe M(2003) Lymphangiogenesis and tumor metastasis. Cell Tissue Res 314:167–177

    Article  PubMed  CAS  Google Scholar 

  • Persaud K, Tille JC, Liu M, Zhu Z, Jimenez X, Pereira D, Miao H, Brennan L, Witte L, Pepper M, Pytowski B (2004) Involvement of the VEGF receptor 3 in tubular morphogenesis demonstrated with a human anti-human VEGFR-3 monoclonal antibody that antagonizes receptor activation by VEGF-C. J Cell Sci 117:2745–2756

    Article  PubMed  CAS  Google Scholar 

  • Popkov M, Jendreyko N, Gonzalez-Sapienza G, Mage R, Rader C, Barbas C (2004) Human/mouse cross-reactive anti-VEGF receptor 2 recombinant antibodies selected from an immune b9 allotype rabbit antibody library. J Immunol Methods 288:149–164

    Article  PubMed  CAS  Google Scholar 

  • Popkov M, Jendreyko N, McGavern D, Rader C, Barbas C (2005) Targeting tumor angiogenesis with adenovirusdelivered anti-Tie-2 intrabody. Cancer Res 65:972–981

    PubMed  CAS  Google Scholar 

  • Posey J, Ng T, Yang B, Khazaeli M, Carpenter M, Fox F, Needle M, Waksal H, LoBuglio A (2003) A phase I study of anti-kinase insert domain-containing receptor antibody, IMC-1C11, in patients with liver metastases from colorectal carcinoma. Clin Cancer Res 9:1323–1332

    PubMed  CAS  Google Scholar 

  • Prewett M, Huber J, Li Y, Santiago A, O’Connor W, King K, Overholser J, Hooper A, Pytowski B, Witte L, Bohlen P, Hicklin J (1999) Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res 59:5209–5218

    PubMed  CAS  Google Scholar 

  • Pytowski B, Goldman J, Persaud K, Wu Y, Witte L, Hicklin D, Skobe M, Boardman K, Swartz M (2005) Complete and specific inhibition of adult lymphatic regeneration by a novel VEGFR-3 neutralizing antibody. J Natl Cancer Inst 97:14–21

    Article  PubMed  CAS  Google Scholar 

  • Rabbany S, Heissig B, Hattori K, Rafii S (2003) Molecular pathways regulating mobilization of marrow-derived stem cells for tissue revascularization. Trends Mol Med 9:109–117

    Article  PubMed  CAS  Google Scholar 

  • Rakhmilevich A, Hooper A, Hicklin D, Sondel P (2004) Treatment of experimental breast cancer using interleukin-12 gene therapy combined with anti-vascular endothelial growth factor receptor-2 antibody. Mol Cancer Ther 3:969–976

    PubMed  CAS  Google Scholar 

  • Ran S, Huang X, Downes A, Thorpe P(2003) Evaluation of novel antimouse VEGFR2 antibodies as potential antiangiogenic or vascular targeting agents for tumor therapy. Neoplasia 5:297–307

    PubMed  CAS  Google Scholar 

  • Reichert F, Barak V, Tarshis M, Prindull G, Tarshis E, Ben-Ishay Z (2005) Anti-angiogenic effects and regression of localized murine AML produced by anti-VEGF and anti-Flk-1 antibodies. Eur J Haematol 75:41–46

    Article  PubMed  CAS  Google Scholar 

  • Renno R, Terada Y, Haddadin M, Michaud N, Gragoudas E, Miller J (2004) Selective photodynamic therapy by targeted verteporfin delivery to experimental choroidal neovascularization mediated by a homing peptide to vascular endothelial growth factor receptor-2. Arch Ophthalmol 122:1002–1011

    Article  PubMed  CAS  Google Scholar 

  • Ribatti D (2004) The involvement of endothelial progenitor cells in tumor angiogenesis. J Cell Mol Med 8:294–300

    Article  PubMed  CAS  Google Scholar 

  • Roberts N, Kloos B, Cassella M, Podgrabinska S, Persaud, K, Wu Y, Pytowski B, Skobe M (2006) Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res 66:2650–2657

    Article  PubMed  CAS  Google Scholar 

  • Robinson S, Coussens L (2005) Soluble mediators of inflammation during tumor development. Adv Cancer Res 93:159–187

    PubMed  CAS  Google Scholar 

  • Rockwell P, Neufeld G, Glassmann A, Caron D, Goldstein N (1995) In vitro neutralization of vascular endothelial growth factor activation of Flk-1 by a monoclonal antibody. Mol Cell Diff 3:91–109

    CAS  Google Scholar 

  • Rubio Demirovic A, Marty C, Console S, Zeisberger SM, Ruch C, Jaussi R, Schwendener R, Ballmer-Hofer K (2005) Targeting human cancer cells with VEGF receptors-directed liposomes. Oncol Rep 13:319–324

    PubMed  Google Scholar 

  • Ryan A, Eppler D, Hagler K, Bruner R, Thomford P, Hall R, Shopp G, O’Neill C (1999) Preclinical safety evaluation of rhuMAbVEGF, an antiangiogenic humanized monoclonal antibody. Toxicol Pathol 27:78–86

    PubMed  CAS  Google Scholar 

  • Scappaticci F, Fehrenbacher L, Cartwright T, Hainsworth J, Heim W, Berlin J, Kabbinavar F, Novotny W, Sarkar S, Hurwitz H (2005) Surgical wound healing complications in metastatic colorectal cancer patients treated with bevacizumab. J Surg Oncol 91:173–180

    Article  PubMed  CAS  Google Scholar 

  • Seetharam L, Gotoh N, Maru Y, Neufeld G, Yamaguchi S, Shibuya M. (1995) A unique signal transduction from FLT tyrosine kinase, a receptor for vascular endothelial growth factor VEGF. Oncogene 10:135–147

    PubMed  CAS  Google Scholar 

  • Senger D, van de Water L, Brown L, Nagy J, Yeo K, Yeo T, Berse B, Jackman R, Dvorak A, Dvorak H. (1993) Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Rev 12:303–324

    Article  PubMed  CAS  Google Scholar 

  • Shaheen R, Ahmad S, Liu W, Reinmuth N, Jung Y, Tseng W, Drazan K, Bucana C, Hicklin D, Ellis L (2001a) Inhibited growth of colon cancer carcinomatosis by antibodies to vascular endothelial and epidermal growth factor receptors. Br J Cancer 85:584–589

    Article  PubMed  CAS  Google Scholar 

  • Shaheen R, Tseng W, Vellagas R, Liu W, Ahmad S, Jung Y, Reinmuth N, Drazan K, Bucana C, Hicklin D, Ellis L (2001b) Effects of an antibody to vascular endothelial growth factor receptor-2 on survival, tumor vascularity, and apoptosis in a murine model of colon carcinomatosis. Int J Oncol 18:221–226

    PubMed  CAS  Google Scholar 

  • Sho M, Akashi S, Kanehiro H, Hamada K, Kashizuka H, Ikeda N, Nomi T, Kuzumoto Y, Tsurui Y, Yoshiji H, Wu Y, Hicklin D, Briscoe DM, Nakajima Y (2005) Function of the vascular endothelial growth factor receptors Flt-1 and Flk-1/KDR in the alloimmune response in vivo. Transplantation 80:717–722

    Article  PubMed  CAS  Google Scholar 

  • Silvestre JS, Tamarat R, Ebrahimian T, Le-Roux A, Clergue M, Emmanuel F, Duriez M, Schwartz B, Branellec D, Levy B (2003) Vascular endothelial growth factor-B promotes in vivo angiogenesis. Circ Res 93:114–123

    Article  PubMed  CAS  Google Scholar 

  • Skobe M, Rockwell P, Goldstein N, Vosseler S, Fusenig N (1997) Halting angiogenesis suppresses carcinoma cell invasion. Nat Med 3:1222–1227

    Article  PubMed  CAS  Google Scholar 

  • Stacker S, Achen M, Jussila L, Baldwin M, Alitalo K (2002) Lymphangiogenesis and cancer metastasis. Nat Rev Cancer 2:573–583

    Article  PubMed  CAS  Google Scholar 

  • Stefanik D, Fellows W, Rizkalla L, Rizkalla W, Stefanik P, Deleo A, Welch W (2001) Monoclonal antibodies to vascular endothelial growth factor (VEGF) and the VEGF receptor, FLT-1, inhibit the growth of C6 glioma in a mouse xenograft. J Neurooncol 55:91–100

    Article  PubMed  CAS  Google Scholar 

  • Stocks M (2005) Intrabodies as drug discovery tools and therapeutics. Curr Opin Chem Biol 9:359–365

    Article  PubMed  CAS  Google Scholar 

  • Stoelcker B, Echtenacher B, Weich H, Sztajer H, Hicklin D, Mannel D (2000) VEGF/Flk-1 interaction, a requirement for malignant ascites recurrence. J Interferon Cytokine Res 20:511–517

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto H, Hamano Y, Charytan D, Cosgrove D, Kieran M, Sudhakar A, Kalluri R (2003) Neutralization of circulating vascular endothelial growth factor (VEGF) by anti-VEGF antibodies and soluble VEGF receptor 1 (sFlt-1) induces proteinuria. J Biol Chem 278:12605–12608

    Article  PubMed  CAS  Google Scholar 

  • Sweeney P, Karashima T, Kim S, Kedar D, Mian B, Huang S, Baker C, Fan Z, Hicklin D, Pettaway C, Dinney C (2002) Anti-vascular endothelial growth factor receptor 2 antibody reduces tumorigenicity and metastasis in orthotopic prostate cancer xenografts via induction of endothelial cell apoptosis and reduction of endothelial cell matrix metalloproteinase type 9 production. Clin Cancer Res 8:2714–2724

    PubMed  CAS  Google Scholar 

  • Tong R, Boucher Y, Kozin S, Winkler F, Hicklin D, Jain R (2004) Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 64:3731–3736

    Article  PubMed  CAS  Google Scholar 

  • Tonra J, Deevi D, Joynes C, Li H, Rong L, Bassi R, Persaud K, Prewett M, Carrick F, Steiner P, Hicklin D, Pytowski B (2005) Effects of an antibody to VEGFR-3, mF4-31Cl, on tumor growth in mouse models. Clin Cancer Res 11:9042s (abstract B44)

    Google Scholar 

  • Tsurusaki T, Kanda S, Sakai H, Kanetake H, Saito Y, Alitalo K, Koji T. (1999) Vascular endothelial growth factor-C expression in human prostatic carcinoma and its relationship to lymph node metastasis. Br J Cancer 80:309–313

    Article  PubMed  CAS  Google Scholar 

  • Vincent L, Jin D, Karajannis M, Shido K, Hooper A, Rashbaum W, Pytowski B, Wu Y, Hicklin D, Zhu Z, Bohlen P, Niesvizky R, Rafii S (2005) Fetal stromal-dependent paracrine and intracrine vascular endothelial growth factora/vascular endothelial growth factor receptor-1 signaling promotes proliferation and motility of human primary myeloma cells. Cancer Res 65:3185–3192

    PubMed  CAS  Google Scholar 

  • Vosseler S, Mirancea N, Bohlen P, Mueller M, Fusenig N (2005) Angiogenesis inhibition by vascular endothelial growth factor receptor-2 blockade reduces stromal matrix metalloproteinase expression, normalizes stromal tissue, and reverts epithelial tumor phenotype in surface heterotransplants. Cancer Res 65:1294–1305

    Article  PubMed  CAS  Google Scholar 

  • Wang E, Teruya-Feldstein J, Wu Y, Zhu Z, Hicklin D, Moore M (2004) Targeting autocrine and paracrine VEGF receptor pathways inhibits human lymphoma xenografts in vivo. Blood 104:2893–2902

    Article  PubMed  CAS  Google Scholar 

  • Weis S, Cheresh D (2005) Pathophysiological consequences of VEGF-induced vascular permeability. Nature 437:397–504

    Article  CAS  Google Scholar 

  • Wey J, Fan F, Gray M, Bauer T, McCarty M, Somcio R, Liu W, Evans D, Wu Y, Hicklin D, Ellis L (2005) Vascular endothelial growth factor receptor-1 promotes migration and invasion in pancreatic carcinoma cell lines. Cancer 104:427–438

    Article  PubMed  CAS  Google Scholar 

  • Wheeler Y, Kute T, Willingham M, Chen S, Sane D (2003) Intrabody-based strategies for inhibition of vascular endothelial growth factor receptor-2: effects on apoptosis, cell growth, and angiogenesis. FASEB J 17:1733–1735

    PubMed  CAS  Google Scholar 

  • Winkler F, Kozin S, Tong R, Chae S, Booth M, Garkavtsev I, Xu L, Hicklin D, Fukumura D, di Tomaso E, Munn L, Jain R (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6:553–563

    PubMed  CAS  Google Scholar 

  • Witte L, Hicklin D, Zhu Z, Pytowski B, Kotanides H, Rockwell P, Bohlen P (1998) Monoclonal antibodies targeting the VEGF receptor-2 (FLK-1/KDR) as an anti-angiogenic therapeutic strategy. Cancer Metastasis Rev 17:155–161

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Abdullah R, Bassi R, Hooper A, Overholser J, Jimenez X, Navarro E, Persaud K, Pytowski B, Witt, L, Bohlen P, Hicklin D (2001) Inhibition of tumor growth and angiogenesis in a mouse model by a neutralizing anti-fltl monoclonal antibody. Proc Am Assoc Cancer Res 42 abstr 4436

    Google Scholar 

  • Wu Y, Zhong Z, Hooper A, Li H, Finnerty B, Bassi R, Zhu Z, Witte L, Bohlen P, Rafii S, Hicklin D (2003) Monoclonal antibody against VEGFR1 directly inhibits growth of human breast tumors. Proc Am Assoc Cancer Res 44 abstr 6340

    Google Scholar 

  • Wu Y, Zhong Z, Li H, Huber J, Bassi R, Hooper A, Finnerty B, Jimenez X, Koo H, Balderes P, Ludwig D, Russie P, Witte L., Bohlen P, Hicklin D (2004) A fully human antibody against VEGFR1 inhibits growth of human breast cancers. Proc Am Assoc Cancer Res 45 abstr 3005

    Google Scholar 

  • Wu Y, Zhong Z, Huber J, Bassi R, Finnerty B, Carrick F, Tonra, J, Hicklin D (2005) Preclinical assessment of a fully human antibody against vascular endothelial growth factor receptor 1 as a therapeutic agent for treating breast cancer. Clin Cancer Res 11:9144s (abstr C180)

    Google Scholar 

  • Wu Y, Hooper AT, Zhong Z, Witte L, Bohlen P, Rafii S, Hicklin DJ (2006) The vascular endothelial growth factor receptor (VEGFR-1) supports growth and survival of human breast carcinoma. Int J Cancer 119:1519–1529

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Kondo T, Suzuki S, Izawa H, Kobayashi M, Emi N, Komori K, Naoe T, Takamatsu J, Murohara T (2004) Molecular evaluation of endothelial progenitor cells in patients with ischemic limbs: therapeutic effect by stem cell transplantation. Arterioscler Thromb Vasc Biol 24:192–196

    Article  Google Scholar 

  • Yang A, Camp E, Fan F, Shen L, Gray M, Liu W, Somcio R, Bauer T, Wu Y, Hicklin D, Ellis L (2006) Vascular endothelial growth factor receptor-1 activation mediates epithelial to mesenchymal transition in human pancreatic carcinoma cells. Cancer Res 66:46–51

    Article  PubMed  CAS  Google Scholar 

  • Yoshiji H, Kuriyama S, Hicklin D, Huber J, Yoshii J, Miyamoto Y, Kawata M, Ikenaka Y, Nakatani T, Tsujinoue H, Fukui H. (1999) KDR/Flk-1 is a major regulator of vascular endothelial growth factor-induced tumor development and angiogenesis in murine hepatocellular carcinoma cells. Hepatology 30:1179–1186

    Article  PubMed  CAS  Google Scholar 

  • Yoshiji H, Kuriyama S, Hicklin DJ, Huber J, Yoshii J, Ikenaka Y, Noguchi R, Nakatani T, Tsujinoue H, Fukui H (2001) The vascular endothelial growth factor receptor KDR/ Flk-1 is a major regulator of malignant ascites formation in the mouse hepatocellular carcinoma model. Hepatology 33:841–847

    Article  PubMed  CAS  Google Scholar 

  • Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Hicklin D, Huber J, Nakatani T, Tsujinoue H, Yanase K, Imazu H, Fukui H (2002) Synergistic effect of basic fibroblast growth factor and vascular endothelial growth factor in murine hepatocellular carcinoma. Hepatology 35:834–842

    Article  PubMed  CAS  Google Scholar 

  • Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Hicklin DJ, Wu Y, Yanase K, Namisaki T, Kitade M, Yamazaki M, Tsujinoue H, Masaki T, Fukui H (2004a) Halting the interaction between vascular endothelial growth factor and its receptors attenuates liver carcinogenesis in mice. Hepatology 39:1517–1524

    Article  PubMed  CAS  Google Scholar 

  • Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Yanase K, Namisaki T, Kitade M, Yamazaki M, Tsujinoue H, Masaki T, Fukui H (2004b) Involvement of the vascular endothelial growth factor receptor-1 in murine hepatocellular carcinoma development. J Hepatol 41:97–103

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Rak J (2003) Host microenvironment in breast cancer development: inflammatory and immune cells in tumour angiogenesis and arteriogenesis. Breast Cancer Res 5:83–88

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Rak J, Coomber B, Hicklin D, Kerbel R (2002) Effect of p53 status on tumor response to antiangiogenic therapy. Science 295:1526–1528

    Article  PubMed  CAS  Google Scholar 

  • Zachary I (2005) Neuroprotective role of vascular endothelial growth factor: signalling mechanisms, biological function, and therapeutic potential. Neurosignals 14:207–221

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Yu D, Hicklin D, Hannay JA, Ellis L, Pollock R (2002) Combined anti-fetal liver kinase 1 monoclonal antibody and continuous low-dose doxorubicin inhibits angiogenesis and growth of human soft tissue sarcoma xenografts by induction of endothelial cell apoptosis. Cancer Res 62:2034–2042

    PubMed  CAS  Google Scholar 

  • Zhang H, Li Y, Li H, Bassi R, Jimenez X, Witte L, Bohlen P, Hicklin D, Zhu Z (2004) Inhibition of both the autocrine and the paracrine growth of human leukemia with a fully human antibody directed against vascular endothelial growth factor receptor 2. Leuk Lymph 45:1887–1897

    Article  CAS  Google Scholar 

  • Zhu Z, Rockwell P, Lu D, Kotanides H, Pytowski B, Hicklin D, Bohlen P, Witte L (1998) Inhibition of vascular endothelial growth factor-induced receptor activation with anti-kinase insert domain-containing receptor singlechain antibodies from a phage display library. Cancer Res 58:3209–3214

    PubMed  CAS  Google Scholar 

  • Zhu Z, Lu D, Kotanides H, Santiago A, Jimenez X, Simcox T, Hicklin D, Bohlen P, Witte L (1999) Inhibition of vascular endothelial growth factor induced mitogenesis of human endothelial cells by a chimeric anti-kinase insert domaincontaining receptor antibody. Cancer Lett 13:203–213

    Article  Google Scholar 

  • Zhu Z, Hattori K, Zhang H, Jimenez X, Ludwig DL, Dias S, Russie P, Koo H, Kim H, Lu D, Liu M, Tejada R, Friedrich M, Bohlen P, Witte L, Rafii S (2003) Inhibition of human leukemia in an animal model with human antibodies directed against vascular endothelial growth factor receptor 2. Correlation between antibody affinity and biological activity. Leukemia 17:604–611

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann RC, Hartman T, Bohlen P, Sauer MV, Kitajewski J (2001a) Preovulatory treatment of mice with anti-VEGF receptor 2 antibody inhibits angiogenesis in corpora lutea. Microvasc Res 62:15–25

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann R, Xiao E, Husami N, Sauer M, Lobo R, Kitajewski J, Ferin M (2001b) Short-term administration of antivascular endothelial growth factor antibody in the late follicular phase delays follicular development in the rhesus monkey. J Clin Endocrinol Metab 86:768–772

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann RC, Xiao E, Bohlen P, Ferin M (2002) Administration of antivascular endothelial growth factor receptor 2 antibody in the early follicular phase delays follicular selection and development in the rhesus monkey. Endocrinology 143:2496–2502

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann R, Hartman T, Kavic S, Pauli S, Bohlen P, Sauer M, Kitajewski J (2003) Vascular endothelial growth factor receptor 2-mediated angiogenesis is essential for gonadotropin-dependent follicle development. J Clin Invest 112:659–669

    Article  PubMed  CAS  Google Scholar 

  • Zuo Z, Jimenez X, Witte L, Zhu Z (2000) An efficient route to the production of an IgG-like bispecific antibody. Protein Eng 13:361–367

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bohlen, P., Zhu, Z., Hicklin, D.J. (2008). Vascular Endothelial Growth Factor Receptor Antibodies for Anti-Angiogenic Therapy. In: Marmé, D., Fusenig, N. (eds) Tumor Angiogenesis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33177-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33177-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33176-6

  • Online ISBN: 978-3-540-33177-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics