Skip to main content

Complementary Role of Cardiac CT and MRI

  • Chapter
Multislice CT

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 2193 Accesses

Abstract

Both modalities, CT and MRI, have competed with each other in recent years to get to the ultimate goal: a one-stop-shop for comprehensive information on one’s heart status. This race led to sophisticated technical innovations on both sides but has not yet succeeded, and it unlikely will. At present, the patient’s clinical history is the most important information and basis for choosing the appropriate modality. As shown by many recent studies, cardiac CT allows for a reliable exclusion of significant CAD in proper patient populations, based on its constantly high NPV. In addition to this application, the assessment of bypass patency and even the morphologic evaluation in congenital heart disease (CHD) may be clinically relevant. MR is the modality of choice in any functional aspect of cardiac imaging, whether focusing on cardiac and valvular function or perfusion. Based on its imaging toolbox, it may also be applied in patients with advanced CAD and even more importantly, in the differential diagnosis of the wide variety of nonischemic cardiac diseases. Cardiac MR covers a substantially wider range of diseases than CT; suspicion of CAD though, a key indication for cardiac CT makes the largest share of all cardiac patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • al-Saadi N et al. (2001) Comparison of various parameters for determining an index of myocardial perfusion reserve in detecting coronary stenosis with cardiovascular magnetic resonance tomography. Z Kardiol 90:824–834 (In German)

    Article  PubMed  CAS  Google Scholar 

  • Alkadhi H et al. (2006) Mitral regurgitation: quantification with 16-detector row CTinitial experience. Radiology 238:454–463

    Article  PubMed  Google Scholar 

  • Alkadhi H et al. (2007) Aortic regurgitation: assessment with 64-section CT. Radiology 245:111–121

    Article  PubMed  Google Scholar 

  • Amado LC et al. (2006) Multimodality noninvasive imaging demonstrates in vivo cardiac regeneration after mesenchymal stem cell therapy. J Am Coll Cardiol 48:2116–2124

    Article  PubMed  Google Scholar 

  • Brodoefel H et al. (2007) Dual-source CT with improved temporal resolution in assessment of left ventricular function: a pilot study. AJR Am J Roentgenol 189:1064–1070

    Article  PubMed  Google Scholar 

  • Cerqueira MD et al. (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542

    Article  PubMed  Google Scholar 

  • Cheng AS et al. (2007) Cardiovascular magnetic resonance perfusion imaging at 3-tesla for the detection of coronary artery disease: a comparison with 1.5-tesla. J Am Coll Cardiol 49:2440–2449

    Article  PubMed  Google Scholar 

  • Das KM et al. (2007) Contrast-enhanced 64-section coronary multidetector CT angiography versus conventional coronary angiography for stent assessment. Radiology 245:424–432

    Article  PubMed  CAS  Google Scholar 

  • Djavidani B et al. (2005) Planimetry of mitral valve stenosis by magnetic resonance imaging. J Am Coll Cardiol 45:2048–2053

    Article  PubMed  Google Scholar 

  • Feuchtner GM et al. (2006a) Multislice computed tomography for detection of patients with aortic valve stenosis and quantification of severity. J Am Coll Cardiol 47:1410–1417

    Article  Google Scholar 

  • Feuchtner GM et al. (2006a) Diagnostic performance of MDCT for detecting aortic valve regurgitation. AJR Am J Roentgenol 186:1676–1681

    Article  Google Scholar 

  • Feuchtner GM et al. (2007) Sixty-four slice CT evaluation of aortic stenosis using planimetry of the aortic valve area. AJR Am J Roentgenol 189:197–203

    Article  PubMed  Google Scholar 

  • Gelfand EV et al. (2006) Severity of mitral and aortic regurgitation as assessed by cardiovascular magnetic resonance: optimizing correlation with Doppler echocardiography. J Cardiovasc Magn Reson 8:503–507

    Article  PubMed  Google Scholar 

  • George RT et al. (2006) Multidetector computed tomography myocardial perfusion imaging during adenosine stress. J Am Coll Cardiol 48:153–160

    Article  PubMed  Google Scholar 

  • George RT et al. (2007) Quantification of myocardial perfusion using dynamic 64-detector computed tomography. Invest Radiol 42:815–822

    Article  PubMed  Google Scholar 

  • Gerber BL et al. (2006) Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance. Circulation 113:823–833

    Article  PubMed  Google Scholar 

  • Hecht HS et al. (2008) Usefulness of 64-detector computed tomographic angiography for diagnosing in-stent restenosis in native coronary arteries. Am J Cardiol 101:820–824

    Article  PubMed  Google Scholar 

  • Hendel RC et al. (2006) ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging. J Am Coll Cardiol 48:1475–1497

    Article  PubMed  Google Scholar 

  • Higgins CB et al. (1979) Evaluation of myocardial ischemic damage of various ages by computerized transmission tomography. Time-dependent effects of contrast material. Circulation 60:284–291

    PubMed  CAS  Google Scholar 

  • Hunold P et al. (2002) [Evaluation of myocardial viability with contrast-enhanced magnetic resonance imaging‑comparison of the late enhancement technique with positron emission tomography]. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 174:867–873 (In German)

    Article  PubMed  CAS  Google Scholar 

  • Hunold P et al. (2005) Myocardial late enhancement in contrast-enhanced cardiac MRI: distinction between infarction scar and non-infarction-related disease. AJR Am J Roentgenol 184:1420–1426

    PubMed  Google Scholar 

  • Jakobs TF et al. (2002) Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 12:1081–1086

    Article  PubMed  Google Scholar 

  • Johnson TR et al. (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517

    Article  PubMed  Google Scholar 

  • Kim RJ et al. (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100:1992–2002

    PubMed  CAS  Google Scholar 

  • Kim RJ et al. (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453

    Article  PubMed  CAS  Google Scholar 

  • Kim YY et al. (2007) Left atrial appendage filling defects identified by multidetector computed tomography in patients undergoing radiofrequency pulmonary vein antral isolation: a comparison with transesophageal echocardiography. Am Heart J 154:1199–205

    Article  PubMed  Google Scholar 

  • Lardo AC et al. (2006) Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation 113:394–404

    Article  PubMed  Google Scholar 

  • Liu X et al. (2007) Comparison of 3D free-breathing coronary MR angiography and 64-MDCT angiography for detection of coronary stenosis in patients with high calcium scores. AJR Am J Roentgenol 189:1326–1332

    Article  PubMed  Google Scholar 

  • Mahnken AH et al. (2007) Low tube voltage improves computed tomography imaging of delayed myocardial contrast enhancement in an experimental acute myocardial infarction model. Invest Radiol 42:123–129

    Article  PubMed  Google Scholar 

  • Matt D et al. (2007) Dual-source CT coronary angiography: image quality, mean heart rate, and heart rate variability. AJR Am J Roentgenol 189:567–573

    Article  PubMed  Google Scholar 

  • Moon JC et al. (2003) Toward clinical risk assessment in hypertrophic cardiomyopathy with gadolinium cardiovascular magnetic resonance. J Am Coll Cardiol 41:1561–1567

    Article  PubMed  Google Scholar 

  • Nagel E et al. (2003) Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation 108:432–437

    Article  PubMed  Google Scholar 

  • Nikolaou K et al. (2004) Assessment of myocardial infarctions using multidetector-row computed tomography. J Comput Assist Tomogr 28:286–292

    Article  PubMed  Google Scholar 

  • Ozgun M et al. (2007) Intraindividual comparison of 3D coronary MR angiography and coronary CT angiography. Acad Radiol 14:910–916

    Article  PubMed  Google Scholar 

  • Pouleur AC et al. (2007a) Planimetric and continuity equation assessment of aortic valve area: Head to head comparison between cardiac magnetic resonance and echocardiography. J Magn Reson Imaging 26:1436–1443

    Article  Google Scholar 

  • Pouleur AC et al. (2007b) Aortic valve area assessment: multidetector CT compared with cine MR imaging and transthoracic and transesophageal echocardiography. Radiology 244:745–754

    Article  Google Scholar 

  • Prakash A et al. (2007) Usefulness of magnetic resonance angiography in the evaluation of complex congenital heart disease in newborns and infants. Am J Cardiol 100:715–721

    Article  PubMed  Google Scholar 

  • Rist C et al. (2006) Assessment of coronary artery stent patency and restenosis using 64-slice computed tomography. Acad Radiol 13:1465–1473

    Article  PubMed  Google Scholar 

  • Rominger MB et al. (2000) Left ventricular heart volume determination with fast MRI in breath holding technique: how different are quantitative heart catheter, quantitative MRI and visual echocardiography? Fortschr Roentgenstr 172:23–32

    Article  CAS  Google Scholar 

  • Schertler T et al. (2007) Dual-source computed tomography in patients with acute chest pain: feasibility and image quality. Eur Radiol 17:3179–3188

    Article  PubMed  Google Scholar 

  • Schwitter J et al. (2001) Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation 103:2230–2235

    PubMed  CAS  Google Scholar 

  • Semelka RC et al. (1990a) Interstudy reproducibility of dimensional and functional measurements between cine magnetic resonance studies in the morphologically abnormal left ventricle. Am Heart J 119:1367–1373

    Article  CAS  Google Scholar 

  • Semelka RC et al. (1990b) Normal left ventricular dimensions and function: interstudy reproducibility of measurements with cine MR imaging. Radiology 174:763–768

    CAS  Google Scholar 

  • Setser RM et al. (2000) Quantification of left ventricular function with magnetic resonance images acquired in real time. J Magn Reson Imaging 12:430–438

    Article  PubMed  CAS  Google Scholar 

  • Simonetti OP et al. (2001) An improved MR imaging technique for the visualization of myocardial infarction. Radiology 218:215–223

    PubMed  CAS  Google Scholar 

  • Theisen D et al. (2007) Myocardial perfusion imaging with gadobutrol: a comparison between 3 and 1.5 tesla with an identical sequence design. Invest Radiol 42:499–506

    Article  PubMed  CAS  Google Scholar 

  • Vogel-Claussen, J et al. (2006) Delayed enhancement MR imaging: utility in myocardial assessment. Radiographics 26:795–810

    Article  PubMed  Google Scholar 

  • Vogelsberg H et al. (2008) Cardiovascular magnetic resonance in clinically suspected cardiac amyloidosis: noninvasive imaging compared to endomyocardial biopsy. J Am Coll Cardiol 51:1022–1030

    Article  PubMed  Google Scholar 

  • Wagner A et al. (2003) Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361:374–379

    Article  PubMed  Google Scholar 

  • Wilson RF (1996) Assessing the severity of coronary-artery stenoses. N Engl J Med 334:1735–1737

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wintersperger, B. (2009). Complementary Role of Cardiac CT and MRI. In: Reiser, M., Becker, C., Nikolaou, K., Glazer, G. (eds) Multislice CT. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33125-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33125-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33124-7

  • Online ISBN: 978-3-540-33125-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics