Skip to main content

Multidimensional Scaling

  • Chapter
Handbook of Data Visualization

Part of the book series: Springer Handbooks Comp.Statistics ((SHCS))

Abstract

Suppose dissimilarity data have been collected on a set of n objects or individuals, where there is a value of dissimilarity measured for each pair.The dissimilarity measure used might be a subjective judgement made by a judge, where for example a teacher subjectively scores the strength of friendship between pairs of pupils in her class, or, as an alternative, more objective, measure, she might count the number of contacts made in a day between each pair of pupils. In other situations the dissimilarity measure might be based on a data matrix. The general aim of multidimensional scaling is to find a configuration of points in a space, usually Euclidean, where each point represents one of the objects or individuals, and the distances between pairs of points in the configuration match as well as possible the original dissimilarities between the pairs of objects or individuals. Such configurations can be found using metric and non-metric scaling, which are covered in Sects. 2 and 3. A number of other techniques are covered by the umbrella title of multidimensional scaling (MDS), and here the techniques of Procrustes analysis, unidimensional scaling, individual differences scaling, correspondence analysis and reciprocal averaging are briefly introduced and illustrated with pertinent data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrafiotis, D.K., Rassokhin, D.N. and Lobanov, V.S. (2001). J Comp Chem 22:488–500

    Google Scholar 

  • Anderberg, M.R. (1973). Cluster Analysis for Applications. Academic, New York

    MATH  Google Scholar 

  • Baulieu, F.B. (1989). J Classificat 6:233–246

    Article  MATH  MathSciNet  Google Scholar 

  • Borg, I. and Groenen, P.G. (1997). Modern Multidimensional Scaling. Springer, New York

    MATH  Google Scholar 

  • BP (1996). http://www.bp.com

    Google Scholar 

  • Carroll, J.D. and Chang, J.J. (1970) Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart–Young” decomposition. Psychometrika 35:283–319

    Article  MATH  Google Scholar 

  • Charbonneau, P. (1995). Astrophys J Suppl Ser 101:309–334

    Article  Google Scholar 

  • Charbonneau, P. and Knapp, B. (2005). http://downloadhaoucaredu/archive/pikaia/

    Google Scholar 

  • Corana, A., Marchesi, M., Martini, C. and Ridella, S. (1987). ACM Trans Math Softw 13:262–280

    Article  MATH  MathSciNet  Google Scholar 

  • Cormack, R.M. (1971). J R Stat Soc A 134:321–367

    Article  MathSciNet  Google Scholar 

  • Cox, T.F. (2005). An Introduction to Multivariate Data Analysis. Hodder Arnold, London

    MATH  Google Scholar 

  • Cox, T.F. and Cox, M.AA. (2001). Multidimensional Scaling. Chapman & Hall/CRC, Boca Raton, FL

    MATH  Google Scholar 

  • de Leeuw, J. (1977). Applications of convex analysis to multidimensional scaling. In: Barra, J.R., Brodeau, F., Romier, G., van Cutsen, B. (eds) Recent Developments in Statistics. North Holland, Amsterdam

    Google Scholar 

  • Diday, E. and Simon, J.C. (1976). Clustering analysis. In: Fu, K.S. (ed) Communication and Cybernetics 10 Digital Pattern Recognition. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Digby, P.GN. and Kempton, R.A. (1987). Multivariate Analysis of Ecological Communities. Chapman and Hall/CRC, London

    Google Scholar 

  • Eades, P. (1984). Congressus Numerantium 42:149–160

    MathSciNet  Google Scholar 

  • Eslava-Gomez, G. (1989). Projection pursuit and other graphical methods for multivariate Data. DPhil Thesis, University of Oxford, Oxford

    Google Scholar 

  • Everitt, B.S. and Dunn, G. (1983). Advanced Methods of Data Exploration and Modelling. Heinemann, London

    Google Scholar 

  • Fauquet, C., Desbois, D., Fargette, D. and Vidal, G. (1988). Classification of furoviruses based on the amino acid composition of their coat proteins. In: Cooper, J.I., Asher, M.J.C. (eds) Viruses with Fungal Vectors. Association of Applied Biologists, Edinburgh

    Google Scholar 

  • Goffe, W.L., Ferrier, G.D. and Rogers, J. (1994). J Econometr 60:65–99

    Article  MATH  Google Scholar 

  • Gordon, A.D. (1999). Classification, 2nd edn. Chapman and Hall/CRC, London

    MATH  Google Scholar 

  • Gower, J.C. (1971). Biometrics 27:857–874

    Article  Google Scholar 

  • Gower, J.C. (1985). Measures of similarity, dissimilarity and distance. In: Kotz, S, Johnson, N.L., Read, C.B. (eds) Encyclopedia of Statistical Sciences. vol 5. Wiley, New York

    Google Scholar 

  • Gower, J.C. and Legendre, P. (1986). J Classificat 3:5–48

    Article  MATH  MathSciNet  Google Scholar 

  • Gower, J.C. and Dijksterhuis, G.B. (2004). Procrustes Problems. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Greenacre, M.J. (1984). Theory and Application of Correspondence Analysis. Academic, London

    Google Scholar 

  • Guttman, L. (1968). Psychometrika 33:469–506

    Article  MATH  Google Scholar 

  • Hettich, S., Blake, C.L. and Merz, C.J. (1998). UCI Repository of machine learning databases. http://www.ics.uci.edu/∼ mlearn/MLRepository.html

    Google Scholar 

  • Hubalek, Z. (1982). Biol Rev 57:669–689

    Google Scholar 

  • Hubert, L. and Arabie, P. (1986). Unidimensional scaling and combinatorial optimisation. In: de Leeuw, J., Heiser, W.J., Meulman, J., Critchley, F. (eds) Multidimensional Data Analysis. DSWO, Leiden

    Google Scholar 

  • Hubert, L. and Arabie, P. (1988). Relying on necessary conditions for optimization: unisdimensional scaling and some extensions. In: Bock, H.H. (ed) Classification and Related Methods of Data Analysis. North Holland, Amsterdam

    Google Scholar 

  • Jackson, D.A., Somers, K.M. and Harvey, H.H. (1989). Am Nat 133:436–453

    Article  Google Scholar 

  • Jardine, N. and Sibson, R. (1971). Mathematical Taxonomy. Wiley, London

    MATH  Google Scholar 

  • Kruskal, J.B. (1964a). Psychometrika 29:1–27

    Article  MATH  MathSciNet  Google Scholar 

  • Kruskal, J.B. (1964b). Psychometrika 29:115–129

    Article  MATH  MathSciNet  Google Scholar 

  • Lau, K.N., Leung, P.L. and Tse, K.K. (1998). J Classificat 15:3–14

    Article  MATH  Google Scholar 

  • Mardia, K.V., Kent, J.T. and Bibby, J.M. (1979). Multivariate Analysis. Academic, London

    MATH  Google Scholar 

  • Morrison, A., Ross, G. and Chalmers, M. (2003). Inf Visual 2:68–77

    Article  Google Scholar 

  • Ripley, B.D. (1996). Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Sammon, J.W. (1969). IEEE Trans Comput 18:401–409

    Article  Google Scholar 

  • Schmitt, L.M. (2001). Theor Comput Sci 259:1–61

    Article  MATH  Google Scholar 

  • Shepard, R.N. (1962a). Psychometrika 27:125–140

    Article  MathSciNet  Google Scholar 

  • Shepard, R.N. (1962b). Psychometrika 27:219–246

    Article  MathSciNet  Google Scholar 

  • Sneath, P. and Sokal, R. (1973). Numerical Taxonomy. Freeman, San Francisco

    MATH  Google Scholar 

  • Snijders, T.A.B., Dormaar, M., van Schuur, W.H., Dijkman-Caes, C. and Driessen, G. (1990). J Classificat 7:5–31

    Article  MATH  Google Scholar 

  • Torgerson, W.S. (1952). Psychometrika 17:401–419

    Article  MATH  MathSciNet  Google Scholar 

  • Young, G. and Householder, A.S. (1938). Psychometrika 3:19–22

    Article  Google Scholar 

  • Young, F.W. and Hamer, R.M. (eds) (1987). Multidimensional Scaling: History, Theory and Applications. Lawrence Erlbaum, Hillsdale, NJ

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cox, M., Cox, T. (2008). Multidimensional Scaling. In: Handbook of Data Visualization. Springer Handbooks Comp.Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33037-0_14

Download citation

Publish with us

Policies and ethics