Skip to main content

Saturation of the Terrestrial Carbon Sink

  • Chapter

Part of the book series: Global Change — The IGBP Series ((GLOBALCHANGE))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber JD, McDowell WH, Nadelhoffer KJ, Magill AH, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandex I (1998) Nitrogen saturation in temperate forest ecosystems. Bioscience 48:921–934

    Google Scholar 

  • Alcamo J, Kreileman E, Leemans R (ed) (1996a) Integrated Scenarios of Global Change. London: Pergamon Press

    Google Scholar 

  • Alcamo J, Kreileman GJJ, Bollen JC, van den Born GJ, Gerlagh R, Krol MS, Toet AMC, de Vries HJM (1996b) Baseline scenarios of global environmental change. Global Environ Change 6:261–303

    Google Scholar 

  • Allen LH, Bisbal EC, Boote KJ, Jones PH (1991). Soybean dry matter allocation under subambient and superambient levels of carbon dioxide. Agron J 83:875–883

    Google Scholar 

  • Anisimov OA, Nelson FE, Pavlov AV (1999) Predictive scenarios of permafrost development under conditions of global climate change in the XXI century. Earth Cryology 3:15–25

    Google Scholar 

  • Archard F, Eva HD, Stibig H-J, Mayaux P, Gallego J, Richards T, Malingreau J-P (2002) Determination of deforestation rates of the world’s humid tropical forests. Science 297:999–1002

    Google Scholar 

  • Asner GP, Knapp DE, Broadbent EN, Oliveira PJC, Keller M, Silva JN (2005) Selective logging in the Brazilian Amazon. Science 310:480–482

    Google Scholar 

  • Barrett DJ, Gifford RM (1995) Acclimation of photosynthesis and growth by cotton to elevated CO2: Interactions with severe phosphate deficiency and restricted rooting volume. Australian J Plant Physiology 22:955–963

    Google Scholar 

  • Bond-Lamberty B, Wang C, Gower ST (2004) Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence. Global Change Biol 10:473–487

    Google Scholar 

  • Botch MS, Kobak KI, Vinson TS, Kolchugina TP (1995) Carbon pools and accumulation in peatlands of the former Soviet Union. Global Biogeochem Cycles 9:37–46

    Google Scholar 

  • Burrows WH, Henry BK, Back PV, Hoffmann MB, Tit LJ, Anderson ER, Menke N, Danaher T, Carter JO, McKeon GM (2002) Growth and carbon stock change in eucalypt woodlands in northeast Australia: ecological and greenhouse sink implications. Global Change Biol 8:769–784

    Google Scholar 

  • Camill P (2005) Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming. Climatic Change 68:135–152

    Google Scholar 

  • Canadell JG, Mooney HA, Baldocchi DD, Berry JA, Ehleringer JR, Field CB, Gower ST, Hollinger DY, Hunt JE, Jackson RB, Running SW, Shaver GR, Steffen W, Trumbore SE, Valentini R, Bond BY (2000). Carbon Metabolism of the Terrestrial Biosphere: a multi-technique approach for improved understanding. Ecosystems 3:115–130

    Google Scholar 

  • Cannell MGR (2003) Carbon sequestration and biomass energy offset: theoretical, potential and achievable capacities globally, in Europe and the UK. Biomass Bioenergy 24:97–116

    Google Scholar 

  • Cao M, Woodward FI (1998) Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393:249–252

    Google Scholar 

  • Carey EV, Sala A, Keane R, Callaway RM (2001) Are old forests underestimated as global carbon sinks? Global Change Biol 7:339–344

    Google Scholar 

  • Carroll AL, Taylor SW, Régnière J, Safranyik L (2004) Effects of Climate Change on Range Expansion by the Mountain Pine Beetle in British Columbia. In: Mountain Pine Beetle Symposium: Challenges and Solutions, pp 223–232, October 30–31, 2003, Kelowna, British Columbia. TL Shore, JE Brooks, and JE Stone (eds). Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Information Report BC-X-399, Victoria, BC. 298 p

    Google Scholar 

  • Carvalho G, Barros AC, Moutinho PRS, Nepstad DC (2001) Sensitive development could protect Amazonia instead of destroying it. Nature 409:131

    Google Scholar 

  • Caspersen JP, Pacala SW, Jenkins JC, Hurtt GC, Moorcroft PR, Birdsey RA (2000) Contributions of land use history to carbon accumulation in U.S. forests. Science 290:1148–1151

    Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Google Scholar 

  • Cole V, et al. (1996) Agricultural options for mitigation of greenhouse gas emissions. In: Climate Change 1995. Impacts, Adaptations and mitigation of climate change: Scientific-Technical Analyses, Watson RT, Zinyowera MC, Moss RH, Dokken DJ (eds). Cambridge University Press, New York, pp 745–771

    Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    Google Scholar 

  • Cox PM, Betts RA, Collins M, Harris PP, Huntingford C, Jones CD (2004) Amazonian forest dieback under climate-carbon cycle projections for the 21st Century. Theo Appl Climatol 78:137–156

    Google Scholar 

  • Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley J, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global responses of terrestrial ecosystems structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biol 7:357–373

    Google Scholar 

  • DeFries RS, Field CB, Fung I, Collatz GJ, Bounoua L (1999) Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Global Biogeochem Cycles 13:803–815

    Google Scholar 

  • DeFries RS, Houghton RA, Hansen MC, Field CB, Skole D, Townshend J (2002) Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s. PNAS 99:14256–14261

    Google Scholar 

  • Derwent RG, Stevenson DS, Collins WJ, Johnson CE (2004) Intercontinental transport and the origins of the ozone observed at surface sites in Europe. Atmospheric Environment 38:1891–1901

    Google Scholar 

  • Desai AR, Bolstad PV, Cook BD, Davis KJ, Carey EV (2005) Comparing net ecosystem exchange of carbon dioxide between an old-growth and mature forest in the upper Midwest, USA. Agriculture, Forest Meteorol 128:33–35

    Google Scholar 

  • Dippery JK, Tissue DT, Thomas RB, Strain BR (1995) Effects of low and elevated CO2 on C3 and C4 annuals. I. Growth and biomass accumulation. Oecologia 101:13–20

    Google Scholar 

  • Dixon RK, Krankina ON (1993) Forest fires in Russia: carbon dioxide emissions to the atmosphere. Canadian J For Res 23:700–705

    Google Scholar 

  • Donigian AS Jr, Barnwell TO Jr, Jackson RB IV, Patwardhan AS, Weinrich KB, Rowell AL, Chinnaswamy RV, Cole CV (1994) Assessment of Alternative Management Practices and Policies Affecting Soil Carbon in Agroecosystems of the Central United States. U.S. EPA Report EPA/600/R-94/067, Athens, 194 pp

    Google Scholar 

  • Dukes JS, Chiariello NR, Cleland EE, Moore LA, Shaw MR, Thayer S, Tobeck T, Mooney HA, Field CB (2005) Responses of Grassland Production to Single and Multiple Global Environmental Changes. PLoS Biology 3, e319 DOI: 10.1371/journal.pbio.0030319

    Google Scholar 

  • Edwards EJ, McCaffery S, Evans JR (2005) Phosphorus status determines biomass response to elevated CO2 in a legume: C4 grass community. Global Change Biol 11:1968–1981

    Google Scholar 

  • Fang C, Smith P, Moncrieff JB, Smith JU (2005) Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433:57–59

    Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Ann Rev Plant Physiol 33:317–345

    Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry J (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 plants. Planta 149:78–90

    Google Scholar 

  • Fearnside PM, Laurance WF (2004) Tropical deforestation and greenhouse-gas emissions. Ecological Appl 14:982–986

    Google Scholar 

  • Felzer B, Kicklighter D, Melillo J, Wang C, Zhuang Q, Prinn R (2004) Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model. Tellus 56B:230–248

    Google Scholar 

  • Felzer B, Reilly J, Mellillo J, Kicklighter D, Sarofim M, Wang C, Prinn R, Zhuang Q (2005) Future effects of ozone on carbon sequestration and climate change policy using a global biogeochemical model. Climatic Change 73:345–373

    Google Scholar 

  • Field CB, Kaduk J (2004) The carbon balance of an old-growth forest: building across approaches. Ecosystems 7:525–533

    Google Scholar 

  • Field CB, Chapin FS, III, Chiariello NR, Holland EA, Mooney HA (1996) The Jasper Ridge CO2 experiment: design and motivation. In: Carbon Dioxide and Terrestrial Ecosystems, Koch G, Mooney HA (eds). Academic Press, San Diego, pp 121–145

    Google Scholar 

  • Fierer N, Craine JM, McLauchlan K, Schimel JP (2005) Litter quality and the temperature sensitivity of decomposition. Ecology 86:320–326

    Google Scholar 

  • Flannigan MD, Bergeron Y, Engelmark O, Wotton BM (1998) Future wildfire in circumboreal forests in relation to global warming. J Veg Sci 9:469–476

    Google Scholar 

  • Flannigan MD, Stocks BJ, Wotton BM (2000) Climate change and forest fires. Science of the total environment 262:221–229

    Google Scholar 

  • Fowler D, Cape JN, Coyle M, Flechard C, Kuylenstienra J, Hicks K, Derwent D, Johnson C, Stevenson D (1999) The global exposure of forests to air pollutants. Water Air Soil Pollut 116:5–32

    Google Scholar 

  • Freeman C, Fenner N, Ostle NJ, Kang H, Dowrick DJ, Reynolds B, Lock MA, Sleep D, Hughes S, Hudson J (2004) Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 430:195–198

    Google Scholar 

  • Frey KE, Smith LC (2005) Amplified carbon release from vast West Siberian peatlands by 2100. Geophysical Res Lett 32:No. L09401

    Google Scholar 

  • Friborg T, Soegaard H, Christensen TR, Lloyd CR, Panikov NS (2003) Siberian wetlands: where a sink is a source. Geophysical Res Lett 30:2129

    Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Doney VS, Eby M, I. Fung I, Govindasamy B, John J, C. Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis. Results from the C4MIP model intercomparison. J Clim 19:3337–3353

    Google Scholar 

  • Fung I (2005) Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. PNAS 102:10823–10827

    Google Scholar 

  • Galloway JN, Cowling EB (2002) Reactive nitrogen and the world: 200 years of change. Ambio 31:64–71

    Google Scholar 

  • Giardina CP, Ryan MG (2000) Evidence that decomposition rates of orgnaic carbon in mineral sil do not vary with temperature. Nature 404:861

    Google Scholar 

  • Gifford RM (1992) Interaction of carbon dioxide with growth-limiting environmental factors in vegetation productivity: implications for the global carbon cycle. Advances Bioclimatol 1:25–58

    Google Scholar 

  • Gifford RM (1994) The global carbon cycle: a view point on the missing sink. Australian J Plant Physiol 21:1–15

    Google Scholar 

  • Gifford RM, Howden M (2001) Vegetation thickening in an ecological perspective: significance to national greenhouse gas inventories. Environ Sci Policy 4:59–72

    Google Scholar 

  • Gifford RM, Lutze JL, Barrett DJ (1996) Global atmospheric change effects on terrestrial carbon sequestration: Exploration with a global C-and N-cycle model (CQUESTN). Plant and Soil 187:369–387

    Google Scholar 

  • Giorgi F, Bi X, Jeremy Pal J (2004) Mean, interannual variability and trends in a regional climate change experiment over Europe. II: climate change scenarios (2071-2100) Climate Dynamics 23:839–858

    Google Scholar 

  • Gitz V, Ciais P (2004) Future expansion of agriculture and pasture acts to amplify atmospheric CO2 levels in response to fossil-fuel and land-use change emissions. Climatic Change 67:161–184

    Google Scholar 

  • Global Carbon Project (2003) Science framework and implementation. Canadell JG, Dickinson R, Hibbard K, Raupach M, Young O (eds). Earth System Science Partnership Report No. 1; GCP Report No. 1, 69 pp, Canberra

    Google Scholar 

  • Goldewijk KK (2001) Estimating global land-use change over the past 300 years: The HYDE Database. Global Biogeochem Cycles. 15:417–433

    Google Scholar 

  • Goulden ML, Wofsy SC, Harden JW, Trumbore SE, Crill PM, Gower ST, Fries T, Daube BC, Fan SM, Sutton DJ, Bazzaz A, Munger JW (1998) Sensitivity of Boreal forest carbon balance to soil thaw. Science 279:214–217

    Google Scholar 

  • Grissino-Mayer HD, Swetnam TW (2000) Century-scale climate forcing of fire regimes in the American Southwest. Holocene 10:213–220

    Google Scholar 

  • Groenigen van K-J, Six J, Hungate BA, de Graaff M-A, van Breemen N, van Kessel C (2006) Element interactions limit soil carbon storage. PNAS 103:6571–6574

    Google Scholar 

  • Gruber N, Friedlingstein P, Field CB, Valentini R, Heimann M, Richey JF, Romero P, Schulze E-D, Chen A (2004) The vulnerability of the carbon cycle in the 21st Century: An assessment of carbonclimate-human interactions. In: Global Carbon Cycle, integrating human, climate, and the natural world, Field CB, Raupach M (eds). Island Press, Washington, DC., pp 45–76

    Google Scholar 

  • Gurney KR, Law RM, Denning AS, Rayner PJ, Baker D, Bousquet P, Brhwiler L, Chen Y-H, Ciais P, Fan S, Fung IY, Gloor M, Heimann M, Higuchi K, John J, Maki T, Kaksyutov S, Masarie K, Peylin P, Prather M, Pak BC, Randerson J, Sarmiento J, Toguchi S, Takahashi T, Yuen C-W (2002) Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Science 415:626–630

    Google Scholar 

  • Hall SJ, Matson PA (1999) Nitrogen oxide emissions after nitrogen additions in tropical forests. Nature 400:152–155

    Google Scholar 

  • Handa IT, Körner C, Hattenschwiler S (2005) A test of the treeline carbon limitation hypothesis by in situ CO2 enrichment and defoliation. Ecology 86:1288–1300

    Google Scholar 

  • Hättenschwiler S, Körner C (1996) Effects of elevated CO2 and increased nitrogen deposition on photosynthesis and growth of understory plants in spruce model ecosystems. Oecologia 106:172–180

    Google Scholar 

  • Hättenschwiler S, Körner C (2000) Tree seedling response to in situ CO2-enrichment differs among species and depend on understorey light availability. Global Change Biol 6:213–226

    Google Scholar 

  • Holland EA, Braswell BH, Lamarque J-F, Townsend A, Sulzman J, Muller J-F, Dentener F, Brasseur G, Levy II H, Penner JE, Roelofs G-J (1997) Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. J Geophys Res 102:15849–15886

    Google Scholar 

  • Houghton RA (1998) Historic role of forests in the global carbon cycle. In: Carbon Dioxide Mitigation in Forestry and Wood Industry, Kohlmaier GH, Weber M, Houghton RA (eds). Springer-Verlag, Berlin, pp 1–24

    Google Scholar 

  • Houghton RA (1999) The annual net flux of carbon to the atmosphere from changes in land use 1850–1900. Tellus Ser. B 51B:298–313

    Google Scholar 

  • Houghton RA (2002) Magnitude, distribution and causes of terrestrial carbon sinks and some implications for policy. Climate Policy 2:71–88

    Google Scholar 

  • Houghton RA (2003) Why are estimates of the terrestrial carbon balance so different? Global Change Biol 9:500–509

    Google Scholar 

  • Houghton RA (2005) Tropical deforestation as a source of greenhouse gas emissions. In: Tropical Deforestation and Climate Change, P. Moutinho P, Schwartzman S (eds). Instituto de Pesquisa Ambiental da Amazonia, Belem, and Environmental Defence, Washington DC, pp 13–21

    Google Scholar 

  • Houghton RA, Hackler JL, Lawrence KT (1999) The US carbon budget: contributions from land-use change. Science 285:574–578

    Google Scholar 

  • Houghton RA, Hackler JL, Lawrence KT (2000) changes in terrestrial carbon storage in the United States. 2: The role of fire and fire management. Global Ecol Biogeogr 9:145–170

    Google Scholar 

  • House JI, Prentice IC, Le Quere C (2002) Maximum impacts of future reforestation or deforestation on atmospheric CO2. Global Change Biol 8:1047–1052

    Google Scholar 

  • Hungate BA, Dukes JS, Shaw MR, Luo Y, Field CB (2003) Nitrogen and Climate Change. Science 302:1512–1513

    Google Scholar 

  • IPCC (2001) Climate Change 2001. The scientific basis. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linder PJ, Dai X, Maskell K, Johnson CA (eds). Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC-SRES (2000) Special Report on Emissions Scenarios. Nakicenovic N, Swart S (eds). Cambridge University Press, Cambridge

    Google Scholar 

  • Jackson RB, Banner JL, Jobbagy E.G., Pockman WT, Wall DH (2002) Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418:623–626

    Google Scholar 

  • Janssens IA, Freibauer A, Ciais F, Smith P, Nabuurs G-J, Folberth G, Schalamadinger B, Hutjes RWA, Ceulemans R, Schulze E-D, Valentini R, Dolman AJ (2003) Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Nature 300:1538–1542

    Google Scholar 

  • Janssens IA, Freibauer A, Schlamadinger B, Ceulemans R, Ciais P, Dolman AJ, Heimann M, Nabuurs G-J, Smith P, Valentini R, Schulze E-D (2005) The carbon budget of terrestrial ecosystems at country-scale — a European case study. Biogeosciences 2:15–26

    Google Scholar 

  • Jarvis P, Linder S (2000) Constraints to growth of boreal forests. Nature 405:904–905

    Google Scholar 

  • Jasoni RL, Smith SD, Arnone III, JA (2005) Net ecosystem CO2 exchange in Mojave Desert shrublands during the eight year of exposure to elevated CO2. Global Change Biol 11:749–756

    Google Scholar 

  • Jones C, McConnell C, Coleman K, Cox P, Falloon P, Jenkinson D, Powlson D (2005) Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil. Global Change Biol 11:154–166

    Google Scholar 

  • Karnosky DF, Percy KE, Xiang B, Callan B, Noormets A, Mankvska B, Hopkin A, Sober J, Jones W, Dickson RE, Isebrands JG (2002) Interacting elevated CO2 and tropospheric O3 predisposes aspen (Populus tremuloides Michx.) to infection by rust (Melampsora medusae f. sp. Tremuloidae). Global Change Biol 8:329–338

    Google Scholar 

  • Kasischke ES, Stocks BJ (2000) Introduction. In: Fire, climate change, and carbon cycling in the boreal forest, Kasischke ES, Stocks BJ (eds). Springer-Verlag, New York, pp 1–5

    Google Scholar 

  • Kauppi PE, Mielikäinen K, Kuusela K (1992) Biomass and carbon budget of European forests, 1971 to 1990. Science 256:70–74

    Google Scholar 

  • Keeling RF, Piper SC, Heimann M (1996) Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature 381:218–221

    Google Scholar 

  • Kern JS, Johnson MG (1993) Conservation tillage impacts on national soil and atmospheric carbon levels. Soil Sci Soc Amer J 57:200–210

    Google Scholar 

  • Kicklighter DW, Bruno M, Dönges S, Esser G, heimann M, Helfrich J, Ift F, Joos F, Kaduk J, Kohlmaier GH, McGuire AD, Melillo JM, Meyer R, Moore III B, Nadler A, Prentice IC, Sauf W, Schloss AL, Sitch S, Witternberg U, Würth G (1999) A first-order analysis of the potential role of CO2 fertilization to affect the global carbon budget: a comparison of four terrestrial biopshere models. Tellus 51 B:343–366

    Google Scholar 

  • Kirschbaum MUF (1995) The temperature dependence of soil organic decomposition and the effect of global warming on soil organic carbon storage. Soil Biol. Biochem. 27:753–760

    Google Scholar 

  • Knohl A, Schulze E-D, Kolle O, Buchmann N (2003) Large carbon uptake by an unmanaged 250-year-old deciduous forest in Central Germany. Agricultural Forest Meteorol 118:151–167

    Google Scholar 

  • Knorr W, Prentice IC, House JI, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature:298–301

    Google Scholar 

  • Körner C (1996) The response of complex multispecies systems to elevated CO2. In: Global Change and Terrestrial Ecosystems. Walker B, Steffen W. Cambridge, Cambridge University Press, pp 20–42

    Google Scholar 

  • Körner C, Asshoff R, Bignucolo O, Hattenschwiler S, Keel SG, Pelaez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309:1360–1362

    Google Scholar 

  • Körner C, Morgan J, Norby R (2007) CO2 fertilization: when, where, how much? In: Terrestrial Ecosystems in a Changing World, Canadell J, Pataki D, Pitelka L (eds). The IGBP Series. Springer-Verlag, Berlin

    Google Scholar 

  • Kurz WA, Apps MJ (1999) A 70-yr retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol Appl 9:526–547

    Google Scholar 

  • Lal R, Kimble JM, Follet RF, Cole CV (1998) The potential of U.S. cropland to sequester carbon and mitigate the greenhouse effect. Ann Arbor Press, Chelsea, MI. pp 128

    Google Scholar 

  • Lamarque JF (2005) Nitrogen deposition onto the United States and western Europe: Synthesis of observations and models. Ecological Appl 15:38–57

    Google Scholar 

  • Laurance WF (2000) Mega-development trends in the Amazon: Implications for global change Environ Monit Assess 61:113–122

    Google Scholar 

  • Law BE, Sun OJ, Campbell J, Van tuyl S, Thorton PE (2003) Changes in carbon storage and fluxes in a chronosequence of ponderosa pine. Global Change Biol 9:510–524

    Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants face the future. Annual Review Plant Biology 55:591–628

    Google Scholar 

  • Luger AD, Moll EJ (1993) Fire protection and afromontane forest expansion in cape fynbos. Biolog Conserv 64:51–56

    Google Scholar 

  • Luo Y, Wan S, Hui D, Wallace LL (2001) Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413:622–625

    Google Scholar 

  • Luo Y, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–739

    Google Scholar 

  • Luo Y, Hui D, Zhang D (2006) Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87:53–63

    Google Scholar 

  • Mack F, Hoffstadt J, Esser G, Goldammer JG (1996) Modeling the influence of vegetation fires on the global carbon cycle. In: Biomass burning and global change Vol. In Levine JS (ed), MIT Press, Cambridge, MA

    Google Scholar 

  • Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin III FS (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–443

    Google Scholar 

  • Matson PA, McDowell WH, Townsend AR, Vitousek PM (1999) The globalization of N deposition: ecosystem consequences in tropical environments. Biogeochemistry 46:67–83

    Google Scholar 

  • McGuire AD, Sitch S, Clein JS, Dargaville R, Esser G, Foley J, Heimann M, Joos F, Kaplan J, Kicklighter DW, Meier RA, Melillo JM, Moore III B, Prentice IC, Ramankutty N, Reichenau T, Schloss A, Tian H, Williams LJ, Wittenberg U (2001) Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land-use effects with four process-based ecosystem models. Global Biogeochem Cycles 15:183–206

    Google Scholar 

  • Meehl GA, Tebaldi C (2004) More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science 305:994–997

    Google Scholar 

  • Metting FB, Smith JL, Amthor JS (1999) Science needs and new technology for soil carbon sequestration. In: Carbon sequestration in soils: Science, monitoring and beyond, Rosenberg NJ, Izaurralde RC, Malone EL (eds). Battelle Press, Columbus, Ohio, pp 1–34

    Google Scholar 

  • Mooney H, Canadell J, Chapin FS, Ehleringer J, Körner Ch, McMurtrie R, Parton W, Pitelka L, Schulze D-E (1999) Ecosystem Physiology Responses to Global Change. In: The Terrestrial Biosphere and Global Change: Implications for Natural and Managed Ecosystems, Walker BH, Steffen WL, Canadell J, Ingram JSI (eds). Cambridge University Press, London, pp 141–189

    Google Scholar 

  • Morison JIL (1985). Sensitivity of stomata and water use efficiency to high CO2. Plant Cell Environ 8:467–474

    Google Scholar 

  • Mouillot F, Field CB (2005) Fire history and the global carbon budget: a 1° × 1° fire history reconstruction for the 20th century. Global Change Biol 11:398–420

    Google Scholar 

  • Murdiyarso D, Lebel L (2007) Southeast Asian fire regimes and land development policy. In: Terrestrial Ecosystems in a Changing World, Canadell J, Pataki D, Pitelka L (eds). The IGBP Series. Springer-Verlag, Berlin

    Google Scholar 

  • Nabuurs G-J (2004) Current consequences of past actions: how to separate direct from indirect. In: The Global Carbon Cycle: Integrating Humans, Climate and the Natural World, Field C, Raupach M (eds). Island Press, Washington D.C., pp 317–326

    Google Scholar 

  • Nadelhoffer KJ, Emmett BA, Gundersen P, Kjonaas OJ, Koopmans CJ, Schleppi P, Tietema A, Wright RF (1999) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398:145–148

    Google Scholar 

  • Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Mynemi RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1938 to 1999. Science 300:1560–1563

    Google Scholar 

  • Nepstad DC, Verissimo A, Alencar A, Nobres C, Lima E, Lefebvre P, Schlesinger P, Potter C, Mounthiho P, Mendoza E, Cochrane M, Brooks V (1999) Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398:505–508

    Google Scholar 

  • Norby RJ, O’Neill EG (1989) Growth dynamics and water use of seedlings of Quercus alba L. in CO2-enriched atmospheres. New Phytol 111:491–500

    Google Scholar 

  • Norby RJ, O’Neill EG (1991). Leaf area compensation and nutrient interactions in CO2-enriched seedlings of yellow-poplar (Liriodendron tulipifera L.). New Phytol 117:515–528

    Google Scholar 

  • Norby RJ, DeLucia EH, Gielend B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, De Angelis P, Finzi AC, Karnosky DF, Kubiskel ME, Luka M, Pregitzer KS, Scarascia-Mugnozza GE, Schlesinger WH, Oren R (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. PNAS 102:18052–18056

    Google Scholar 

  • Nowak RS, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated atmospheric CO2 — do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol 162:253–280

    Google Scholar 

  • Oechel WC, Cowles S, Grulke N, Hastings SJ, Lawrence B, Prudhomme T, Riechers G, Strain B, Tissue D, Vourlitis G (1994) Transient nature of CO2 fertilization in Arctic tundra. Nature 371:500–503

    Google Scholar 

  • Olesen JE, Bindi M (2002) Consequences of climate change for European agricultural productivity, land use and policy. European J Agron 16:239–262

    Google Scholar 

  • Owensby CE, Ham JM, Knap AK, Bremer D, Auen LM (1997) Water vapor fluxes and their impact under elevated CO2 in a C4-tallgrass prairie. Global Change Biol 3:189–195

    Google Scholar 

  • Pacala SW, Hurtt GC, Baker D, Peylin P, Houghton RA, Birdsey RA, Heath L, Sundquist ET, Stallard RF, Ciais P, Moorcroft P, Caspersen JP, Shevliakova E, Moore B, Kohlmaier G, Holland E, Gloor M, Harmon ME, Fan S-M, Sarmiento JL, Goodale CL, Schimel D, Field CB (2001) Consistent land-and atmosphere-based U.S. carbon sink estimates. Science 292:2316–2320

    Google Scholar 

  • Page SE, Siegert F, Rieley JO, Boehm H-D V, Jaya A, Limin S (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420:61–65

    Google Scholar 

  • Page SE, Wust RAJ, Weiss D, Rieley JO, Shotyk W, Limin SH (2004) A record of late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. Journal of Quaternary Science 19:625–635

    Google Scholar 

  • Pataki DE, Huxman TE, Jordan DN, Zitzer SF, Coleman JS, Smith SD, Nowak RS, Seemann JR (2000) Water use of two Mojave Desert shrubs under elevated CO2. Global Change Biol 6:889–897

    Google Scholar 

  • Payette S, Delwaide A, Caccianiga M, Beauchemin M (2004) Accelerated thawing of subartic peatland permafrost over the last 50 years. Geophysical Research Letters 31:L18208

    Google Scholar 

  • Peteet D, Andreev A, Bardeen W, Mistretta F (1998) Long-term Arctic peatland dynamics, vegetation and climate history of the Pur-Taz region, Western Siberia. Boreas 27:115–126

    Google Scholar 

  • Polley HW, Johnson HB, Mayeux HS (1992) Growth and gas exchange of oats (Avena sativa) and wild mustard (Brassica kaber) at subambient CO2 concentrations. Int J Plant Sci 153:453–461

    Google Scholar 

  • Polley HW, Johnson HB, Marino BD, Mayeux HS (1993) Increase in C3 plant water-use efficiency and biomass over glacial to present CO2 concentrations. Nature 361:61–64

    Google Scholar 

  • Polley HW, Johnson HB, Mayeus HS (1994) Increasing CO2: comparative responses of the C4 grass Schizachyrium and grassland invader Prosopis. Ecology 75:976–988

    Google Scholar 

  • Prentice IC (2001) The carbon cycle and atmospheric carbon dioxide. In: IPCC — Climate Change 2001. The scientific basis, Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linder PJ, Dai X, Maskell K, Johnson CA (eds). Cambridge University Press, Cambridge, pp 182–237

    Google Scholar 

  • Ramankutty N, Foley JA (1999) Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochem Cycles 13:997–1027

    Google Scholar 

  • Raupach M, Canadell JG, Bakker D, Ciais P, Sanz M-J, Fang JY, Melillo J, Romero-Lankao P, Sathaye J, Schulze D, Smith P, Tschirley J (2004) Interactions between CO2 stabilisation pathways and requirements for a sustainable Earth System. In: Global Carbon Cycle, Integrating Humans, Climate and the Natural World, Field C, Raupach M (eds), Island Press, Washington, D.C., pp 45–76

    Google Scholar 

  • Raupach MR, Canadell JG (2006) Observing a vulnerable carbon cycle. In: Observing the continental scale greenhouse gas galance of Europe, Dolman H, Valentini R, Freibauer A (eds). Springer-Verlag, Berlin (in press)

    Google Scholar 

  • Rayner PJ, Enting IG, Francey RJ, Langenfelds R (1999) Reconstructing the recent carbon cycle from atmospheric CO2, delta 13C and O2/N2 observations. Tellus B 51:213–232

    Google Scholar 

  • Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J (2006) Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440:922–925

    Google Scholar 

  • Richey JE (2004) Pathways of atmospheric CO2 through fluvial systems. In: The Global Carbon Cycle: Integrating Humans, Climate and the Natural World, Field C, Raupach M (eds). Island Press, Washington D.C., pp 329–340

    Google Scholar 

  • Richey JE, Melack JM, Aufdenkampe AAK, Balleter VM, Hess L (2002) Outgassing from Amazonia Rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620

    Google Scholar 

  • Rogers HH, Bingham GE, Cure JD, Smith JM, Surano KA (1983) Responses of selected plant species to elevated carbon dioxide in the field. J Environ Quality 12:569–574

    Google Scholar 

  • Rustad LE, Campbell J, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J, GCTE-NEWS (2001) A meta-analyses of the response of soil respiration, net N mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562

    Google Scholar 

  • Sabine CL, Heimann M, Artaxo P, Bakker DCE, Chen C-TA, Field CB, Gruber N, Le Quere C, Prinn RG, Richey JE, Romero P, Sathaye JA, Valentini R (2004) Current status of past trends of the global carbon cycle. In: Global Carbon Cycle, Integrating Humans, Climate and the Natural World, Field C, Raupach M (eds). Island Press, Washington, D.C, pp 17–44

    Google Scholar 

  • Saleska SR, Miller SD, Matross DM, Goulden ML, Wofsy SC, Rocha HR, Camargo PB, Crill P, Daube BC, Freitas HC, Hutyra L, Keller M, Kirchhoff V, Menton M, Munger JW, Pyle EH, Rice AH, Silva H (2003) Carbon in amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science 302:1554–1557

    Google Scholar 

  • Sanz MJ, Millán MM (1999) Ozone in the Mediterranean Region: Evidence of Injury to Vegetation. In: Forest Dynamics in Heavily Polluted Regions, Innes, Oleksyn (eds). CABI Publishing, pp 165–192

    Google Scholar 

  • Schaphoff S, Lucht W, gerten D, Sitch S, Cramer W, Prentice C (2006) Terrestrial biosphere carbon storage under alternative climate projections. Climatic Change 74:97–122

    Google Scholar 

  • Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MA, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore III B, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–172

    Google Scholar 

  • Schlesinger WH, Andrews JA (2000) Soil respiration and the global carbon cycle. Biogeochemistry 48:7–20

    Google Scholar 

  • Scholes RJ, Hall DO (1996) The carbon budget of tropical savannas, woodlands and grasslands. In: Global Change: Effects on coniferous forests and grasslands. Breymeyer AI, Hall DO, Melillo JM, Agren GI (eds). SCOPE 56, John Wiley, Chichester, pp 70–100

    Google Scholar 

  • Schulze ED, Lloyd J, Kelliher FM, Wirth C, Rebmann C, Luhker B, Mund M, Knohl A, Milyukova IM, Schulze W, Ziegler W, Varlagin AB, Sogachev AF, Valentini R, Dore S, Grigoriev S, Kolle O, Panfyorov MI, Tchebakova N, Vygodskaya NN (1999) Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink — a synthesis. Global Change Biol 5:703–722

    Google Scholar 

  • Smith P (2004) Soils as carbon sinks: the global context. Soil Use Manag 20:212–218

    Google Scholar 

  • Smith P (2005) An overview of the permanence of soil organic carbon stocks: influence of direct human-induced, indirect and natural effects. European J Soil Science 56:673–680

    Google Scholar 

  • Smith DL, Johnson LC (2003) Expansion of Juniperus virginiana L. in the Great Plains: changes in soil carbon dynamics. Global Biogeochem Cycles 17, doi: 10.1029/2002GB001990

    Google Scholar 

  • Smith TM, Shugart HH (1993) The transient response of terrestrial carbon storage to a perturbed climate. Nature 361:523–526

    Google Scholar 

  • Smith P, Powlson DS, Smith JU, Falloon P, Coleman K (2000) Meeting Europe’s climate change commitments: Quantitative estimates of the potential for carbon mitigation by agriculture. Global Change Biol 6:525–539

    Google Scholar 

  • Smith SV, Renwick WH, Buddemeier RW, Crossland CJ (2001) Budgets of soil erosion and deposition for sediments and sedimentary organic C across the conterminous United States. Global Biogeochem Cycles 15:697–707

    Google Scholar 

  • Smith P, Andrén O, Karlsson T, Perälä P, Regina K, Rounsevell M, van Wesemael B (2005a) Carbon sequestration potential in European croplands has been overestimated. Global Change Biol 11:2153–2163

    Google Scholar 

  • Smith LC, Sheng Y, MacDonald GM, Hinzman LD (2005b) Disappearing Artic lakes. Science 308:1429

    Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen HH, Kumar P, McCarl B, O’Mara F, Rice C, Scholes RJ, Sirotenko O, Howden M, McAllister T, Ogle S, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith JU (2006) Greenhouse gas mitigation in agriculture. Phil Trans Royal Soc, B. (submitted)

    Google Scholar 

  • Stallard RF (1998) Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial. Global Biogeochem Cycles 12:231–257

    Google Scholar 

  • Stocks BJ, Fosberg MA, Lynham TJ, Mearns L, Wotton BM, Yang Q, Jin J-Z, Lawrence K, Hartley GR, Mason JA, McKenney DW (1998) Climate change and forest fire potential in Russian and Canadian boreal forests. Clim Change 38:1–13

    Google Scholar 

  • Syvitski JPM, Vorosmarty CH, Kettner AJ, Green P (2005) Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308:376–380

    Google Scholar 

  • Tans PP, Fung IY, Takahashi T (1990) Observational constraints on the global CO2 budget. Science 247:1431–1438

    Google Scholar 

  • Tarnocai C, Kimble J, Broll G (2003) Determining carbon stocks in cryosols using the Northern and Mid Latitudes soil database. In: Permafrost, Phillips, Springman, Arenson (eds). Swets and Zeitlinger, Lisse, pp 1129–1134

    Google Scholar 

  • Timmermann A, Oberhuber J, Bacher A, Esch M, Latif M, Roeckner E (1999) Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398:694–697

    Google Scholar 

  • Tognetti R, Cherubini P, Innes JL (2000) Comparative stem-growth rates of Mediterranean trees under background and naturally enhanced ambient CO2 concentrations. New Phytol 146:59–74

    Google Scholar 

  • Townsend AR, Braswell BH, Holland EA, Penner JE (1996) Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen. Ecol Appl 6:806–814

    Google Scholar 

  • Turetsky M, Wieder K, Halsey L, Vitt D (2002) Current disturbance and the diminishing peatland carbon sink. Geophysical Research Letters 29: 10.1029/2001Gl014000

    Google Scholar 

  • Turunen J, Tahvanainen T, Tolonen K, Pitkanen A (2001) Carbon accumulation in West Siberian mires, Russia. Global Biogeochem Cycles 15:285–296

    Google Scholar 

  • Valentini R, Matteucci G, Dolman AJ, Schulze ED, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grunwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik U, Berbigier P, Loustau D, Guomundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff J, Montagnani L, Minerbi S, Jarvis PG (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404:861–865

    Google Scholar 

  • VEMAP members (1995) Vegetation/ecosystem modeling and analysis project: Comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling. Global Biogeochem Cycles 9:407–438

    Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13:87–115

    Google Scholar 

  • Walker BH, Steffen WL, Langridge J (1999) Interactive and integrated effects of global change on terrestrial ecosystems. In: The Terrestrial Biosphere and Global Change. Implications for Natural and Managed Ecosystems, Walker BH, Steffen WL, Canadell J, Ingram JSI (eds). Cambridge University Press, Cambridge, pp 329–375

    Google Scholar 

  • Ward JK, Strain BR (1997) Effects of low and elevated CO2 partial pressure on growth and reproduction of Arabidopsis thaliana from different elevations. Plant Cell Envir 20:254–260

    Google Scholar 

  • Werf GR, Randerson JT, Collatz GJ, Giglio L, Prasad S. Kasibhatla PS, Arellano Jr AF, Olsen SC, Kasischke ES (2004) Continental-scale partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña Period. Science 303:73–76

    Google Scholar 

  • Wolfe DW, Gifford RM, Hilbert D, Luo Y (1998) Integration of photosynthetic acclimation to CO2 at the whole plant level. Global Change Biol 4:879–893

    Google Scholar 

  • Xu D-Q, Gifford RM, Chow WS (1994) Photosynthetic acclimation in pea and soybean to high atmospheric CO2 partial pressure. Plant Physiology 106:661–671

    Google Scholar 

  • Yuen CW, Higuchi K, TRANSCOM-3 Modellers (2005) Impact of Fraserdale CO2 observations on annual flux inversion of the North American boreal region. Tellus 57B:203–209

    Google Scholar 

  • Zimov SA, Schuur EAG, Chapin III FS (2006) Permafrost and the global carbon budget. Science 312:1612–1613

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Canadell, J.G. et al. (2007). Saturation of the Terrestrial Carbon Sink. In: Canadell, J.G., Pataki, D.E., Pitelka, L.F. (eds) Terrestrial Ecosystems in a Changing World. Global Change — The IGBP Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32730-1_6

Download citation

Publish with us

Policies and ethics