Skip to main content

Responses of High Latitude Ecosystems to Global Change: Potential Consequences for the Climate System

  • Chapter
Terrestrial Ecosystems in a Changing World

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aagaard K, Carmack EC (1989) The role of sea ice and other fresh water in the arctic circulation. J Geophys Res 94: 14485–14498

    Google Scholar 

  • Amiro BD, Todd JB, Wotton BM, Logan KA, Flannigan MD, Stocks BJ, Mason JA, Martell DL, Hirsch KB (2001) Direct carbon emissions from Canadian forest fires, 1959–1999. Can J For Res 31:512–525

    Article  Google Scholar 

  • Are FE (1999) The role of coastal retreat for sedimentation in the Laptev Sea. In: Kassens H, Bauch H, Dmitrenko I, Eicken H, Hubberten H-W, Melles M, Thiede J, Timokhov LA (eds) Landocean systems in the Siberian Arctic: Dynamics and history. Springer-Verlag, Berlin, pp 287–295

    Google Scholar 

  • Arneth A, Kurbatova J, Kolle O, Shibistova OB, Lloyd J, Vygodskaya NN, Schulze ED (2002) Comparative ecosystem-atmosphere exchange of energy and mass in a European Russian and central Siberian bog. II. Interseasonal and interannual variability of CO2 fluxes. Tellus 54B: 514–530

    Google Scholar 

  • Baldocchi D, Kelliher FM, Black TA, Jarvis PG (2000) Climate and vegetation controls on boreal zone energy exchange. Global Change Biol 6(Suppl 1):69–83

    Article  Google Scholar 

  • Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Pilegaard KUK, Schmid H, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Amer Meteor Soc 82:2415–2434

    Article  Google Scholar 

  • Barber VA, Juday GP, Finney BP (2000) Reduced growth of Alaska white spruce in the twentieth century from temperature-induced drought stress. Nature 405:668–673

    Article  Google Scholar 

  • Barry RG, Serreze MC (2000) Atmospheric components of the Arctic Ocean freshwater balance and their interannual variability. In: Lewis EL (ed) The freshwater budget of the Arctic Ocean. Kluwer Academic Publishers, Netherlands, pp 45–56

    Google Scholar 

  • Bergh J, Linder S, Lundmark T (1999) The effect of water and nutrient availability on the productivity of Norway spruce in northern and southern Sweden. For Ecol Manage 119:51–62

    Article  Google Scholar 

  • Betts RA (2000) Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408:187–190

    Article  Google Scholar 

  • Betts AK, Ball JH (1997) Albedo over the boreal forest. J Geophys Res 102: 28901–28909

    Article  Google Scholar 

  • Bonan GB, Van Cleve K (1992) Soil temperature, nitrogen mineralization, and carbon source-sink relationships in boreal forest. Can J For Res 22:629–639

    Google Scholar 

  • Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forest vegetation on global climate. Nature 359:716–718

    Article  Google Scholar 

  • Bonan GB, Chapin FS III, Thompson SL (1995) Boreal forest and tundra ecosystems as components of the climate system. Climatic Change 29:145–167

    Article  Google Scholar 

  • Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG Vaganov EA (1998) Reduced sensitivity of recent northern tree-growth to temperature at northern high latitudes. Nature 391:678–682

    Article  Google Scholar 

  • Broecker W (1997) Thermohaline circulation, the achilles heel of our climate system: Will man-made CO2 upset the current balance? Science 278:1582–1588

    Article  Google Scholar 

  • Callaghan TV, Johansson M, Heal OW, Sælthun NR, Barkved LJ, Bayfield N, Brandt O, Brooker R, Christiansen HH, Forchhammer M, Høe TT, Humlum O, Järvinen A, Jonasson C, Kohler J, Magnusson B, Meltofte H, Mortensen L, Neuvonen S, Pearce I, Rasch M, Turner L, Hasholt B, Huhta E, Leskinen E, Nielsen N Siikamäki P (2004) Environmental changes in the North Atlantic region: SCANNET as a collaborative approach for documenting, understanding and predicting changes. Ambio Special Report 13:39–50

    Google Scholar 

  • Callaghan TV, Bjorn LO, Chapin FS III, Chernov Y, Christensen TR, Huntley B, Ims R, Johnasson M, Jolly D, Jonasson S, Matveyeva N, Oechel WC, Panikov N, Shaver GR (2005) Tundra and polar desert ecosystems. In: Corell R (ed) Arctic Climate Impact Assessment. Cambridge University Press, Cambridge, UK, pp 243–352

    Google Scholar 

  • Chambers SD, Chapin FS III (2003) Fire effects on surface-atmosphere energy exchange in Alaskan black spruce ecosystems. J Geophys Res 108(D1):8145, 10.1029/2001JD000530

    Article  Google Scholar 

  • Chapin FS III, Starfield AM (1997) Time lags and novel ecosystems in response to transient climatic change in arctic Alaska. Climatic Change 35:449–461

    Article  Google Scholar 

  • Chapin FS III, Vitousek PM, Van Cleve K (1986) The nature of nutrient limitation in plant communities. American Naturalist 127:48–58

    Article  Google Scholar 

  • Chapin FS III, McGuire AD, Randerson J., Pielke Sr. R, Baldocchi D, Hobbie SE, Roulet N, Eugster W, Kasischke E, Rastetter EB, Zimov SA, Oechel WC, Running SW (2000a) Feedbacks from arctic and boreal ecosystems to climate. Global Change Biol 6(Suppl 1):211–223

    Article  Google Scholar 

  • Chapin FS III, Eugster W, McFadden JP, Lynch AH, Walker DA (2000b) Summer differences among arctic ecosystems in regional climate forcing. J Climate 13:2002–2010

    Article  Google Scholar 

  • Chapin FS III, Sturm M, Serreze MC, McFadden JP, Key JR, Lloyd AH, McGuire AD, Rupp TS, Lynch AH, Schimel JP, Beringer J, Epstein HE, Hinzman LD, Jia G, Ping C-L, Tape K, Chapman WL, Euskirchen SE, Thompson CD, Walker DA, Welker JM (2005) Role of Land-Surface Changes in Arctic Summer Warming. Science 310:657–660

    Article  Google Scholar 

  • Chen J, Chen W, Liu J, Cihlar J (2000) Annual carbon balance of Canada’s forests during 1895–1996. Global Biogeochem Cycles 14:839–849

    Article  Google Scholar 

  • Christensen TR, Jonasson S, Michelsen A, Callaghan TV, Hastrom M (1998) Environmental controls on soil respiration in the Eurasian and Greenlandic Arctic. J Geophys Res 103: 29,015–29,021

    Google Scholar 

  • Christensen TR, Joabsson A, Ström L, Panikov N, Mastepanov M, Öquist M, Svensson BH, Nykänen H, Martikainen P, Oskarsson H (2003) Factors controlling large scale variations in methane emissions from wetlands. Geophys Res Lett 30: 1414

    Article  Google Scholar 

  • Christensen TR, Johansson T, Åkerman HJ, Mastepanov M, Malmer N, Friborg T, Crill P, Svensson BH (2004) Thawing sub-arctic permafrost: Effects on vegetation and methane emissions Geophys Res Lett 31: L04501, doi:10.1029/2003GL018680

    Article  Google Scholar 

  • Clein J, Kwiatkowski B, McGuire AD, Hobbie JE, Rastetter EB, Melillo JM, Kicklighter DW (2000) Modeling carbon responses of tundra ecosystems to historical and projected climate: A comparison of a plot-and a global-scale ecosystem model to identify process-based uncertainties. Global Change Biol 6(Suppl 1):127–140

    Article  Google Scholar 

  • Clein JS, McGuire AD, Zhuang X, Kicklighter DW, Melillo JM, Wofsy SC, Jarvis PG, Massheder JM (2002) Historical and projected carbon balance of mature black spruce ecosystems across North America: The role of carbon-nitrogen interactions. Plant and Soil 242:15–32

    Article  Google Scholar 

  • Conard SG, Ivanova GA (1997) Wildfire in Russian boreal forests — Potential impacts of fire regime characteristics on emissions and global carbon balance estimates. Environ Pollut 98:305–313

    Article  Google Scholar 

  • Coyne PI, Kelley JJ (1974) Variations in carbon dioxide across an arctic snowpack during spring. J Geophys Res 79:799–802

    Google Scholar 

  • Csiszar I, Justice CO, McGuire AD, Cochrane MA, Roy DP, Brown F, Conard SG, Frost PGH, Giglio L, Elvidge C, Flannigan MD, Kasischke E, McRae DJ, Rupp TS, Stocks BJ, Verbyla DL (2004) Land use and fires. Chapter 19 In: Gutman G, Janetos AC, Justice CO, Moran EF, Mustard JF, Rindfuss RR, Skole D, Turner II BL, Cochrane MA Dordrecht (eds) Land Change Science: Observing, Monitoring, and Understanding Trajectories of Change on the Earth’s Surface. Kluwer Academic Publishers, Netherlands, pp 329–350

    Google Scholar 

  • D’Arrigo RD, Jacoby GC (1993) Secular trends in high northern latitude temperature reconstructions based on tree rings. Climatic Change 25:163–177

    Article  Google Scholar 

  • Dissing D, Verbyla DL (2003) Spatial patterns of lightning strikes in Interior Alaska and their relations to elevation and vegetation. Can J For Res 33:770–782

    Article  Google Scholar 

  • Dye DG (2002) Variability and trends in the annual snow-cover cycle in Northern Hemisphere land areas, 1972–2000. Hydrol Proc 16:3065–3077

    Article  Google Scholar 

  • Eilertsen SM (2002) Utilization of abandoned coastal meadows in northern Norway by reindeer. Ph.D. thesis, University of Tromsø 25 pp

    Google Scholar 

  • Ensminger I, Sveshnikov D, Campbell DA, Funk C, Jansson S, Lloyd J, Shibistova O, Oquist G (2004) Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests. Global Change Biol 10:995–1008

    Article  Google Scholar 

  • Esper J, Schweingruber FH (2004) Large-scale treeline changes recorded in Siberia. Geophys Res Lett 3: L06202

    Article  Google Scholar 

  • Euskirchen SE, McGuire AD, Kicklighter DW, Zhuang Q, Clein JS, Dargaville RJ, Dye DG, Kimball JS, McDonald KC, Melillo JM, Romanovsky VE, Smith NV (2006) Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Global Change Biol 12:731–750

    Article  Google Scholar 

  • Fahnestock JT, Jones MH, Welker JM (1999) Wintertime CO2 efflux from arctic soils: Implications for annual carbon budgets. Global Biogeochem Cycles 13:775–779

    Article  Google Scholar 

  • Flannigan M, Campbell I, Wotton M, Carcaillet C, Richard P, Bergeron Y (2001) Future fire in Canada’s boreal forest: Paleoecology results and general circulation model — regional climate model simulations. Can J For Res 31:854–864

    Article  Google Scholar 

  • Foley JA, Kutzbach JE, Coe MT, Levis S (1994) Feedbacks between climate and boreal forests during the Holocene epoch. Nature 371:52–54

    Article  Google Scholar 

  • Forman SL, Maslowski W, Andrews JT, Lubinski D, Steele M, Zhang J, Lammers R, Peterson B (2000) Researchers explore arctic freshwater’s role in ocean circulation. Eos Trans AGU 81(16):169–174

    Article  Google Scholar 

  • Friborg T, Soegaard H, Christensen TR, Lloyd CR, Panikov NS (2003) Siberian Wetlands: Where a sink is a source. Geophys Res Lett 30:2129

    Article  Google Scholar 

  • Frolking S, McDonald KC, Kimball J, Way JB, Zimmermann R, Running SW (1999) Using the space-borne NASA scatterometer (NSCAT) to determine the frozen and thawed seasons of a boreal landscape. J Geophys Res 104: 27,895–27,907

    Article  Google Scholar 

  • Furyaev VV, Vaganov EA, Tchebakova NM, Valendik EN (2001) Effects of fire and climate on succession and structural changes in the Siberian boreal forest. Eur J For Res 2:1–15

    Google Scholar 

  • Goetz SJ, Bunn AG, Fiske GJ, Houghton RA (2005) Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc Nat Acad Sci 102:13521–13525

    Article  Google Scholar 

  • Goulden ML, Wofsy SC, Harden JW, Trumbore SE, Crill PM, Gower ST, Fries T, Daube BC, Fan S-M, Sutton DJ, Bazazz A, Munger JW (1998) Sensitivity of boreal forest carbon balance to soil thaw. Science 279:214–217

    Article  Google Scholar 

  • Grogan P, Chapin FS III (1999) Arctic soil respiration: effects of climate and vegetation depend on season. Ecosystems 2:451–459

    Article  Google Scholar 

  • Hinzman LD, Bettez ND, Bolton WR, Chapin FS III, Dyurgerov MB, Fastie CL, Griffith DB, Hollister RD, Hope A, Huntington HP, Jensen AM, Jia GJ, Jorgenson T, Kane DL, Klein DR, Kofinas G, Lynch AH, Lloyd AH, McGuire AD, Nelson FE, Nolan M, Oechel WC, Osterkamp TE, Racine CH, Romanovsky VE, Stone RS, Stow DA, Sturm M, Tweedie CE, Vourlitis GL, Walker MD, Walker DA, Webber PJ, Welker J, Winker KS, Yoshikawa K (2005) Evidence and implications of recent climate change in terrestrial regions of the Arctic. Climatic Change 72:251–298

    Article  Google Scholar 

  • Hobbie SE, Chapin FS III (1996) Winter regulation of tundra litter carbon and nitrogen dynamics. Biogeochemistry 35:327–338

    Article  Google Scholar 

  • Hobbie SE, Schimel JP, Trumbore SE, Randerson JR (2000) A mechanistic understanding of carbon storage and turnover in high-latitude soils. Global Change Biol 6(Suppl 1):196–210

    Article  Google Scholar 

  • Hustich I (1958) On the recent expansion of the Scotch Pine in northern Europe. Fennia 82:3–23

    Google Scholar 

  • IPCC (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881 pp

    Google Scholar 

  • Jacoby GC, D’Arrigo RD (1995) Tree ring width and density evidence of climatic and potential forest change in Alaska. Global Biogeochem Cycles 9:227–234

    Article  Google Scholar 

  • Jia GJ, Epstein HE, Walker DA (2003) Greening of Arctic Alaska, 1981–2001. Geophys Res Lett 30: 2067, doi:10.1029/2003GL018268

    Article  Google Scholar 

  • Juntunen V, Neuvonen S, Norokorpi Y, Tasanen T (2002) Potential for timberline advance in northern Finland, as revealed by monitoring during 1983–1999. Arctic 55:348–361

    Google Scholar 

  • Kajii Y, Kato S, Streets D, Tsai N, Shvidenko A, Nilsson S, McCallun J, Minko N, Abushenko N, Altynsev D, Khozder T (2003) Vegetation fire in Russia in 1998: Estimation of area and emissions of pollutants by AVHRR satellite data. J Geophys Res 108, doi:10.1029/2001JD001078

    Google Scholar 

  • Kasischke E, Christensen NL Jr., Stocks BJ (1995) Fire, global warming, and the carbon balance of boreal forests. Ecol Appl 5:437–451

    Google Scholar 

  • Kelliher FM, Lloyd J, Baldocchi DD, Rebmann C, Wirth C, Schulze E-D (1999) Evaporation in the boreal zone during summer — physics and vegetation. In: Schulze E-D, Heimann M, Harrison S, Holland E, Lloyd J, Prentice C, Schimel D (eds) Global biogeochemical cycles in the climate system. Academic Press, San Diego, pp 151–165

    Google Scholar 

  • Kharuk VI, Dvinskaya ML, Ranson KJ, Im ST (2005) Expansion of evergreen conifers to the larch-dominated zone and climatic trends. Russian Journal of Ecology 36:186–193

    Google Scholar 

  • Klein E, Berg EE, Dial R (2005) Wetland drying and succession across the Kenai Peninsula Lowlands, south-central Alaska. Can J For Res 35:1931–1942

    Article  Google Scholar 

  • Kling GW, Kipphut GW, Miller MC (1991) Arctic lakes and streams as gas conduits to the atmosphere: Implications for tundra carbon budgets. Science 251:298–301

    Article  Google Scholar 

  • Kullman L (1986) Late Holocene reproductional patterns of Pinus sylvestris and Picea abies at the forest limit in central Sweden. Can J Botany 64:1682–1690

    Google Scholar 

  • Kullman L (1995) New and firm evidence for mid-Holocene appearance of Picea abies in the Scandes Mountains, Sweden. J Ecology 83:439–447

    Article  Google Scholar 

  • Kurz WA, Apps MJ (1999) A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol Appl 9:526–547

    Google Scholar 

  • Lavoie C, Payette S (1994) Recent fluctuations of the lichen-spruce forest limit in subarctic Quebec. J Ecology 82:725–734

    Article  Google Scholar 

  • Lesieur D, Gauthier S, Bergeron Y (2002) Fire frequency and vegetation dynamics for the south-central boreal forest of Quebec, Canada. Can J For Res 32:1996–2009

    Article  Google Scholar 

  • Linderholm HW, Solberg BØ, Lindholm M (2003) Tree-ring records from central Fennoscandia: the relationship between growth and climate across an east-west transect. The Holocene 13:887–895

    Article  Google Scholar 

  • Liu H, Randerson JT, Lindfors J, Chapin FS III (2005) Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: An annual perspective. J Geophys Res 110: D13101, doi 10.1029/2004JD005158

    Google Scholar 

  • Lloyd AH, Fastie CL (2002) Spatial and temporal variability in the growth and climate response of treeline trees in Alaska. Climatic Change 52:481–509

    Article  Google Scholar 

  • Lloyd AH, Fastie CL (2003) Recent changes in treeline forest distribution and structure in interior Alaska. Ecoscience 10:176–185

    Google Scholar 

  • Lloyd J, Shibistova O, Zolotoukhine D, Kolle O, Arneth A, Wirth C, Styles JM, Tchebakova NM, Schulze ED (2002) Seasonal and annual variations in the photosynthetic productivity and carbon balance of a central Siberian pine forest. Tellus 54B: 590–610

    Google Scholar 

  • Lloyd AH, Rupp TS, Fastie CL, Starfield AM (2003) Patterns and dynamics of treeline advance in the Seward Peninsula, Alaska. J Geophys Res 108(D2):8161, 10.1029/2001JD000852

    Article  Google Scholar 

  • Luoto M, Heikkinen RK, Carter TR (2004) Loss of palsa mires in Europe and biological consequences. Environ Cons 31:1–8

    Article  Google Scholar 

  • MacDonald GM, Velichko AA, Kremenetsi CV, Borisova OK, Goleva AA, Andreev AA, Cwynar LC, Riding RT, Forman SL, Edwards TWD, Aravena R, Hammarlund D, Szeicz JM, Gattaulin VN (2000) Holocene treeline history and climate change across northern Eurasia. Quat Res 53:302–311

    Article  Google Scholar 

  • Manabe S, Stouffer RJ (1995) Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean. Nature 378:165–167

    Article  Google Scholar 

  • McBean G, Alekseev G, Chen D, Forland E, Fyfe J, Groisman PY, King R, Melling H, Vose R, Whitefield PH (2005) Arctic climate — past and present. In: Corell R (ed) Arctic Climate Impact Assessment. Cambridge University Press, Cambridge, UK, pp 21–60

    Google Scholar 

  • McClelland JW, Holmes RM, Peterson BJ, Stieglitz M (2004) Increasing river discharge in the Eurasian Arctic: Consideration of dams, permafrost thaw, and fires as potential agents of change. J Geophys Res. 109, D18102, doi:10.1029/2004JD004583

    Google Scholar 

  • McDonald K, Kimball J, Njoku E, Zimmermann R, Zhao M (2004) Variability in springtime thaw in the terrestrial high latitudes: Monitoring a major control on the biospheric assimilation of atmospheric CO2 with spaceborne microwave remote sensing. Earth Interactions 8: 20.1–20.23

    Article  Google Scholar 

  • McFadden JP, Chapin FS III, Hollinger DY (1998) Subgrid-scale variability in the surface energy balance of arctic tundra, J Geophys Res 103: 28, 947–28,961

    Google Scholar 

  • McGuire AD, Melillo JM, Joyce LA, Kicklighter DW, Grace AL, Moore III B, Vorosmarty CJ (1992) Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America. Global Biogeochem Cycles 6:101–124

    Article  Google Scholar 

  • McGuire AD, Melillo JM, Kicklighter DW, Joyce LA (1995) Equilibrium responses of soil carbon to climate change: Empirical and process-based estimates. J Biogeo 22:785–796

    Article  Google Scholar 

  • McGuire AD, Wirth C, Apps M, Beringer J, Clein J, Epstein H, Kicklighter DW, Bhatti J, Chapin FS III, de Groot B, Efremov D, Eugster W, Fukuda M, Gower T, Hinzman L, Huntley B, Jia GJ, Kasischke E, Melillo J, Romanovsky V, Shvidenko A, Vaganov E, Walker D (2002) Environmental variation, vegetation distribution, carbon dynamics, and water/energy exchange in high latitudes. J Veg Sci 13:301–314

    Article  Google Scholar 

  • McGuire AD, Sturm M, Chapin FS III (2003) Arctic Transitions in the Land-Atmosphere System (ATLAS): Background, objectives, results, and future directions. J Geophys Res 108: 8166, doi:10.1029/2002JD002367

    Article  Google Scholar 

  • McGuire AD, Apps M, Chapin FS III, Dargaville R, Flannigan MD, Kasischke ES, Kicklighter D, Kimball J, Kurz W, McRae DJ, McDonald K, Melillo J, Myneni R, Stocks BJ, Verbyla DL, Zhuang Q (2004) Land cover disturbances and feedbacks to the climate system in Canada and Alaska. Chapter 9 In: In: Gutman G, Janetos AC, Justice CO, Moran EF, Mustard JF, Rindfuss RR, Skole D, Turner II BL, Cochrane MA Dordrecht (eds) Land Change Science: Observing, Monitoring, and Understanding Trajectories of Change on the Earth’s Surface. Kluwer Academic Publishers, Netherlands, pp 139–161

    Google Scholar 

  • Melillo JM, Kicklighter DW, McGuire AD, Peterjohn WT, Newkirk KM (1995) Global change and its effects on soil organic carbon stocks. In: Zepp RG, Sonntag C (eds) Role of nonliving organic matter in the Earth’s carbon cycle. John Wiley and Sons, New York, pp 175–189

    Google Scholar 

  • Michaelson GJ, Ping CL (2003) Soil organic carbon and CO2 respiration at subzero temperature in soils of Arctic Alaska. J Geophys Res 108(D2):8164

    Article  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702

    Article  Google Scholar 

  • Myneni RB, Dong J, Tucker CJ, Kaufmann RK, Kauppi PE, Liski J, Zhou L, Alexeyev V, Hughes MK (2001) A large carbon sink in the woody biomass of northern forests. Proc Natl Acad Sci USA 98: 14784–14789

    Article  Google Scholar 

  • Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563

    Article  Google Scholar 

  • Oechel WC, Vourlitis GL, Hastings SJ, Bochkarev SA (1995) Change in arctic CO2 flux over two decades: Effects of climate change at Barrow, Alaska. Ecol Appl 5:846–855

    Google Scholar 

  • Oechel WC, Vourlitis GL, Hastings SJ (1997) Cold season CO2 emission from arctic soil. Global Biogeochem Cycles 11:163–172

    Article  Google Scholar 

  • Oechel WC, Vourlitis GL, Hastings SJ, Zuleta RC, Hinzman L, Kane D (2000) Acclimation of ecosystem CO2 exchange in Alaskan Arctic response to decadal climate warming. Nature 406:978–981

    Article  Google Scholar 

  • Osterkamp TE, Romanovsky VE (1999) Evidence for warming and thawing of discontinuous permafrost in Alaska. Perm Periglal Proc 10:17–37

    Article  Google Scholar 

  • Peterson BJ, Holmes RM, McClelland JW, Vorosmarty CJ, Lammers RB, Shiklomanov AI, Shiklomanov IA, Rahmstorf S (2002) Increasing river discharge to the Arctic Ocean. Science 298:2171–2173

    Article  Google Scholar 

  • Prokuskin AS, Kajimoto T, Prokushkin SG, McDowell WH, Abaimov AP, Matsuura Y (2005) Climatic factors influencing fluxes of dissolved organic carbon from the forest floor in a continuous permafrost Siberian watershed. Can J For Res 35:2130–2140

    Article  Google Scholar 

  • Ramankutty N, Foley JA (1999) Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochem Cycles 13:997–1027

    Article  Google Scholar 

  • Randerson JT, Field CB, Fung IY, Tans PP (1999) Increases in early season net ecosystem uptake explain changes in the seasonal cycle of atmospheric CO2 at high northern latitudes. Geophys Res Lett 26:2765–2768

    Article  Google Scholar 

  • Ritchie JC, MacDonald GM (1986) The patterns of post-glacial spread of white spruce. Journal of Biogeography 13:527–540

    Article  Google Scholar 

  • Romankevich EA, Vetrov AA (2001) Cycle of Carbon in the Russian Arctic Seas, Nauka, Moscow, 302 pp, in Russian

    Google Scholar 

  • Romanovsky VE, Osterkamp TE (1997) Thawing of the active layer on the coastal plain of the Alaskan Arctic. Perm Periglac Proc 8:1–22

    Article  Google Scholar 

  • Rosencranz A, Scott A (1992) Siberia’s threatened forests. Nature 355:93–294

    Article  Google Scholar 

  • Röser C, Nontagnani L, Kolle O, Meroni M, Mollicone D, Papale D, Marchesini LB, Federici S, Schulze E-D, Valentini R (2002) CO2-exchange rates of three differently structured stands in central Siberia during one vegetation period. Tellus 54B: 642–654

    Google Scholar 

  • Roulet NT (2000) Peatlands, carbon storage, greenhouse gases, and the Kyoto Protocol: Prospects and significance for Canada. Wetlands 20:605–615

    Article  Google Scholar 

  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562

    Article  Google Scholar 

  • Schulze E-D, Schulze W, Kelliher FM, Vygodskaya NN, Ziegler W, Kobak KI, Koch H, Arneth A, Kusnetsova WA, Sogatchev A, Issajev A, Bauer G, Hollinger DY (1995) Aboveground biomass and nitrogen nutrition in a chronosequence of pristine Dahurian larix stands in Eastern Siberia. Can J For Res 25:943–960

    Google Scholar 

  • Schulze E-D, Lloyd J, Kelliher FM, Wirth C, Rebmann C, Lühker B, Mund M, Knohl A, Milyukova I, Schulze W, Ziegler W, Varlagin A, Valentini R, Dore S, Grigoriev S, Kolle O, Vygodskaya NN (1999) Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink — A synthesis. Global Change Biol 5:703–722

    Article  Google Scholar 

  • Schulze E-D, Wirth C, Heimann M (2002): Carbon fluxes in the Eurosiberian Region. Environmental Control in Biology 40(3):249–258

    Google Scholar 

  • Scott PA, Hansell RIC, Fayle DCF (1987) Establishment of white spruce populations and responses to climate change at the treeline, Churchill, Manitoba, Canada. Arct Alp Res 19:45–51

    Article  Google Scholar 

  • Serreze MC Walsh JE, Chapin III FS, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry RG (2000) Observational evidence of recent change in the northern high-latitude environment. Climatic Change 46:159–207

    Article  Google Scholar 

  • Serreze MC, Bromwich DH, Clark MP, Etringer AJ, Zhang T, Lammers R (2003) The large-scale hydro-climatology of the terrestrial arctic drainage. J Geophys Res 107: 8160, doi:10.1029/2001JD000919

    Google Scholar 

  • Shaver GR, Billings WD, Chapin FS, Giblin AE, Nadlehoffer KJ, Oechel WC, Rastetter EB (1992) Global change and the carbon balance of arctic ecosystems. Bioscience 42:433–441

    Article  Google Scholar 

  • Sheingauz AS (2001) Forest Complex of Khabarovsk Kray. RIOTIP, Kabarovsk, 201 pp 103, in Russian

    Google Scholar 

  • Shibistova O, Lloyd J, Evgravova S, Savushkina N, Zrazhevskaya G, Arneth A, Knohl A, Kolle O, Schulze E-D (2002) Seasonal and spatial variability in soil CO2 efflux rates for a central Siberian Pinus sylvestris forest. Tellus 54B: 552–567

    Google Scholar 

  • Shiklomanov IA, Shiklomanov AI, Lammers RB, Peterson BJ, Vorosmarty CJ (2000) The dynamics of river water inflow to the Arctic Ocean. In: Lewis EL (ed) The freshwater budget of the Arctic Ocean. Kluwer Academic Publishers, Netherlands, pp 281–296

    Google Scholar 

  • Shvidenko A, Nilsson S (2000a) Extent, distribution, and ecological role of fire in Russian forests. In: Kasischke ES, Stocks BJ (eds) Fire, climate change, and carbon cycling in the boreal forest, Ecological Studies Series, Springer-Verlag, New York, pp 132–150

    Google Scholar 

  • Shvidenko A, Nilsson S (2000b) Fire and carbon budget of Russian forests. In: Kasischke ES, Stocks BJ (eds) Fire, climate change, and carbon cycling in boreal forest, Ecological Studies Series, Springer-Verlag, New York, pp 289–311

    Google Scholar 

  • Shvidenko A, Nilsson S (2002) Dynamics of Russian forests and the carbon budget in 1961–1998: An assessment based on long-term forest inventory data. Climatic Change 55:5–37

    Article  Google Scholar 

  • Shvidenko A, Nilsson S (2003) A synthesis of the impact of Russian forests on the global carbon budget for 1961–1998. Tellus 55B: 391–415

    Google Scholar 

  • Silapaswan CS, Verbyla DL, McGuire AD (2001) Land cover change on the Seward Peninsula: The use of remote sensing to evaluate the potential influences of climate warming on historical vegetation dynamics. Can J Rem Sens 27:542–554

    Google Scholar 

  • Sitch S, McGuire AD, Kimball J, Gedney N, Gamon J, Engstrom R, Wolf A, Zhuang Q, Clein JS (2006) Assessing the circumpolar carbon balance of arctic tundra with remote sensing and process-based modeling approaches. Ecological Applications, In Press

    Google Scholar 

  • Smith TM, Shugart HH (1993) The transient response of terrestrial carbon storage to a perturbed climate. Nature 361:523–526

    Article  Google Scholar 

  • Smith NV, Saatchi SS, Randerson JT (2004) Trends in high northern latitude soil freeze and thaw cycles from 1988 to 2002. J Geophys Res 109: D12101, doi:10.1029/2003JD004472

    Google Scholar 

  • Soja AJ, Sukhinin AI, Cahoon DR Jr., Shugart HH, Stackhouse PW Jr. (2004) AVHRR-derived fire frequency, distribution and area burned in Siberia. Internl J Rem Sens 25:1939–1960

    Article  Google Scholar 

  • Spear RW (1993) The palynological record of Late-Quaternary arctic tree-line in northwest Canada. Rev Paleobot Palynol 79:99–111

    Article  Google Scholar 

  • Starfield AM, Chapin FS III (1996) Model of transient changes in arctic and boreal vegetation in response to climate and land use change. Ecol Appl 6:842–864

    Google Scholar 

  • Steffen W, Shvidenko A (1996) IGBP Northern Eurasia Study: Prospectus for an Integrated Global Change Research Project. IGBP Global Change Reports, No 37, 95 pp

    Google Scholar 

  • Stieglitz M, Giblin A, Hobbie J, Kling G, Williams M (2000) Effects of climate change and climate variability on the carbon dynamics in arctic tundra. Global Biogeochem Cycles 14:1123–1136

    Article  Google Scholar 

  • Stieglitz M, Dery SJ, Romanovsky VE, Osterkamp TE (2003) The role of snow cover in the warming of arctic permafrost. Geophys Res Lett 30: 1721, doi:10.1029/2003GL017337

    Article  Google Scholar 

  • Stocks BJ, Fosberg MA, Wotten MB, Lynham TJ, Ryan KC (2000) Climate change and forest fire activity in North American Boreal Forests. In: Kasischke ES, Stocks BJ (eds) Fire, climate change, and carbon cycling in the boreal forest. Ecological Studies Series, Springer-Verlag, New York, pp 368–376

    Google Scholar 

  • Stocks BJ, Mason JA, Todd JB, Bosch EM, Wotton BM, Amiro BD, Flannigan MD, Hirsch HG, Logan KA, Martell DL, Skinner WR (2003) Large forest fires in Canada 1959–1997. J Geophys Res 108:D1, 8149, doi:10.1029/2001JD000484

    Article  Google Scholar 

  • Stow D, Hope A, McGuire AD, Verbyla D, Gamon J, Huemmrich K, Houston S, Racine C, Sturm M, Tape K, Yoshikawa K, Hinzman L, Tweedie C, Noyle B, Silapaswan C, Douglas D, Griffith B, Jia G, Epstein H, Walker D, Daeschner S, Petersen A, Zhou L, Myneni R (2004) Remote sensing of vegetation and land-cover changes in Arctic tundra ecosystems. Rem Sens Environ 89:281–308

    Article  Google Scholar 

  • Stromgren M, Linder S (2002) Effects of nutrition and soil warming on stemwood production in a boreal Norway spruce stand. Global Change Biol 8:1195–1204

    Article  Google Scholar 

  • Sturm M, Racine C, Tape K (2001) Increasing shrub abundance in the Arctic. Nature 411:546–547

    Article  Google Scholar 

  • Suarez F, Binkley D, Kaye M, Stottlemyer R (1999) Expansion of forest stands into tundra in the Noatak National Preserve, Northwest Alaska. Ecoscience 6:465–470

    Google Scholar 

  • Tenow O (1996) Hazards to a mountain birch forest — Abisko in perspective. Ecol Bull 45:104–114

    Google Scholar 

  • Thomas G, Rowntree PR (1992) The boreal forests and climate. Quart J Royal Meteor Soc 118:469–497

    Article  Google Scholar 

  • Turetsky MR, Wieder RK, Williams CJ, Vitt DH (2000) Organic matter accumulation, peat chemistry, and permafrost melting in peatlands of boreal Alberta. Ecoscience 7:379–392

    Google Scholar 

  • Vaganov EA, Hughes MK, Kirdyanov AV, Schweingruber FH, Silkin PP (1999) Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400:149–151

    Article  Google Scholar 

  • Van Cleve K, Zasada J (1976) Response of 70-year-old white spruce to thinning and fertilization in interior Alaska. Can J For Res 6:145–152

    Article  Google Scholar 

  • Van Cleve K, Barney R, Schlentner R (1981) Evidence of temperature control of production and nutrient cycling in two interior Alaska black spruce ecosystems. Can J For Res 11:258–273

    Google Scholar 

  • Van Cleve K, Oechel WC, Hom JL (1990) Response of black spruce (Picea mariana) ecosystems to soil temperature modification in interior Alaska. Can J For Res 20:1530–1535

    Google Scholar 

  • Viterbo P, Betts AK (1999) Impact on ECMWF forecasts of changes to the albedo of the boreal forests in the presence of snow. J Geophys Res 104: 27,803–27,810

    Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the seas: How can it occur? Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Vitt DH, Halsey LA, Zoltai SC (2000) The changing landscape of Canada’s western boreal forest: the current dynamics of permafrost. Can J For Res 30:283–287

    Article  Google Scholar 

  • Vlassova TK (2002) Human impacts on the tundra-taiga zone dynamics: the case of the Russian lesotundra. In: Callaghan TV (ed) Dynamics of the tundra-taiga interface. Ambio Special Report 12, pp 30–36

    Google Scholar 

  • Waelbroeck C, Louis JF (1995) Sensitivity analysis of a model of CO2 exchange in tundra ecosystems by the adjoint method. J Geophys Res 100:2801–2816

    Article  Google Scholar 

  • Werner RA, Raffa KF, Illman BL (2006) Insect and pathogen dynamics in the Alaskan boreal forest. In: FS Chapin III, Oswood MW, K Van Cleve, LA Viereck, and DL Verbyla (eds) Alaska’s changing boreal forest. Oxford University Press, New York

    Google Scholar 

  • Wirth C (2004) Fire regime and tree diversity in boreal and high elevation forests: Implications for biogeochemical cycles. In: Scherer-Lorenzen M, Körner Ch, Schulze E-D (eds) The ecological significance of forest diversity. Ecological Studies, Springer-Verlag New York, Berlin, Heidelberg

    Google Scholar 

  • Wirth C, Schulze E-D, Schulze W, von Stünzner-Karbe D, Ziegler W, Miljukowa I, Sogatchev A, Varlagin AB, Panvyorov M, Grigoriev S, Kusnetzova W, Siry M, Hardes G, Zimmermann R, Vygodskaya NN (1999) Above-ground biomass in pristine Siberian Scots pine forests as controlled by competition and fire. Oecologia 121:66–80

    Article  Google Scholar 

  • Wirth C, Schulze E-D, Lühker B, Grigoriev S, Siry M, Hardes G, Ziegler W, Backor M, Bauer G, Vygodskaya NN (2002a) Fire and site type effects on the long-term carbon balance in pristine Siberian Scots Pine forests. Plant and Soil 242:41–63

    Article  Google Scholar 

  • Wirth C, Czimczik CI, Schulze E-D (2002b) Beyond annual budgets: Carbon flux at different temporal scales in fire-prone Siberian Scots pine forests. Tellus 54B: 611–630

    Google Scholar 

  • Yoshikawa K, Hinzman L (2003) Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska. Perm Periglac Proc 14:151–160

    Article  Google Scholar 

  • Zhou L, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophys Res 106: 20069–20083

    Article  Google Scholar 

  • Zhuang Q, Melillo JM, Kicklighter DW, Prinn RG, McGuire AD, Steudler PA, Felzer BS, Hu S (2004) Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model. Global Biogeochem Cycles 18: GB3010, doi:10.1029/2004GB002239

    Google Scholar 

  • Zimov SA, Zimova GM, Davidov SP, Daviodiva AI, Voropaev YV, Voropaeva ZV, Prosiannikov SF, Prosiannikova OV, Semiletova IV, Semiletov IP (1993) Winter biotic activity and production of CO2 in Siberian soils: A factor in the greenhouse effect. J Geophys Res 98:5017–5023

    Article  Google Scholar 

  • Zimov SA, Davidov SP, Voropaev YV, Prosiannikov SF, Semiletov IP, Chapin MC, Chapin FS III (1996) Siberian CO2 efflux in winter as a CO2 source and cause of seasonality in atmospheric CO2. Climatic Change 33:111–120

    Article  Google Scholar 

  • Zimov SA, Voropaev YV, Semiletov YV, Davidov SP, Prosiannikov SF, Chapin FS III, Chapin MC, Trumbore S, Tyler S (1997) North Siberian lakes: A methane source fueled by Pleistocene carbon. Science 277:800–802

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McGuire, A.D. et al. (2007). Responses of High Latitude Ecosystems to Global Change: Potential Consequences for the Climate System. In: Canadell, J.G., Pataki, D.E., Pitelka, L.F. (eds) Terrestrial Ecosystems in a Changing World. Global Change — The IGBP Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32730-1_24

Download citation

Publish with us

Policies and ethics