Dynamic Global Vegetation Modeling: Quantifying Terrestrial Ecosystem Responses to Large-Scale Environmental Change

  • I. Colin Prentice
  • Alberte Bondeau
  • Wolfgang Cramer
  • Sandy P. Harrison
  • Thomas Hickler
  • Wolfgang Lucht
  • Stephen Sitch
  • Ben Smith
  • Martin T. Sykes
Part of the Global Change — The IGBP Series book series (GLOBALCHANGE)

15.7 Summary and Conclusions

DGVMs exploit the power of modern computers and computational methods to yield a predictive description of land ecosystem processes that takes account of knowledge previously developed through long histories of separate disciplinary approaches to the study of the biosphere. The degree of interaction between the different scientific approaches still falls far short of optimal; thus, DGVM developers have a responsibility to be aware of progress in several disciplines in order to ensure that their models remain state-of-the-art. We have presented a series of case studies of the evaluation of DGVMs that demonstrate the predictive capability that current models have achieved. Nevertheless, there are plenty of unresolved issues — differences among models that are not well understood, important processes that are omitted or treated simplistically by some or all models, and sets of observations that are not satisfactorily reproduced by current models. More comprehensive “benchmarking” of DGVMs against multiple data sets is required and would be most effectively carried out through an international consortium, so as to avoid duplicating the large amount of work involved in selecting and processing data sets and model experiments. We have also presented a series of case studies that illustrate the power of DGVMs, even with their known limitations, in explaining a remarkable variety of Earth System phenomena and in addressing contemporary issues related to climate and land-use change. These case studies encourage us to believe that the continued development of DGVMs is a worthwhile enterprise. Finally, new directions in Earth System Science point to a range of aspects in which DGVMs could be improved so as to take account of recently acquired knowledge, such as experimental work on whole-ecosystem responses to environmental modification and new understanding of the functional basis of plant traits; complemented by an effort to represent semi-natural and agricultural ecosystems and the impacts of different management practices on these ecosystems; and extended to include processes such as trace-gas emissions, which are important in order to understand the functional role of the terrestrial biosphere in the Earth System. Together, these potential developments add up to an ambitious research program, requiring the economies of scale that only an international collaborative effort can provide.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcamo J (1994) IMAGE 2.0: Integrated Modeling of Global Climate Change. Kluwer Academic Press, Dordrecht, Boston, pp 314Google Scholar
  2. Allen TFH, Hoekstra TW (1990) The confusion between scale-defined levels and conventional levels of organization in ecology. Journal of Vegetation Science 1:5–12Google Scholar
  3. Amthor JS, Chen JM, Clein JS, Frolking SE, Goulden ML, Grant RF, Kimball A, King W, McGuire AD, Nikolov NT, Potter CS, Wang S, Wofsy SC, (2001) Boreal forest CO2 exchange and evapotranspiration predicted by nine ecosystem process models: Inter-model comparisons and relations to field measurements. Journal of Geophysical Research, 106: D24 33623–33648Google Scholar
  4. Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Global Biochemical Cycles 15:955–966Google Scholar
  5. Angert A, Biraud S, Bonfils C, Buermann W, Fung I (2004) CO2 seasonality indicates origins of post-Pinatubo sink. Geophysical Research Letters 31: L11103, doi:10.1029/2004GL019760Google Scholar
  6. Arora VK, Boer GJ (2005) A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Global Change Biology 11:39–5Google Scholar
  7. Arora VK, Boer GJ (in press) Fire as an interactive component of dynamic vegetation models. Journal of Geophysical Research — BiogeosciencesGoogle Scholar
  8. Aumont O, Maier-Reimer E, Blain S, Pondaven P (2003) An ecosystem model of the global ocean including Fe, Si, P co-limitations. Global Biochemical Cycles 17: doi:10.1029/2001GB001745Google Scholar
  9. Bachelet D, Lenihan JM, Daly C, Neilson RP, Ojima DS, Parton WJ (2001) MC1: A dynamic vegetation model for estimating the distribution of vegetation and associated ecosystem fluxes of carbon, nutrients and water. USDA Forest Service General Technical Report, PNW-GTR-508:1–95Google Scholar
  10. Bachelet D, Neilson RP, Hickler T, Drapek RJ, Lenihan JM, Sykes MT, Smith B, Sitch S, Thonicke K (2003) Simulating past and future dynamics of natural ecosystems in the United States. Global Biochemical Cycles 17: 1045 doi:1010.1029/2001GB001508Google Scholar
  11. Baldocchi D (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology 9:479–492Google Scholar
  12. Baldocchi D, Gu LH (2002) Fluxnet 2000 synthesis — Foreword. Agricultural and Forest Meteorology 113:1–2Google Scholar
  13. Barboni D, Harrison SP, Bartlein PJ, Jalut G, New M, Prentice IC, Sanchez-Goñi M-F, Spessa A, Davis B, Stevenson AC (2004) Relationships between plant traits and climate in the Mediterranean region: A pollen data analysis. J Vegetat Sci 15:635–646Google Scholar
  14. Beerling DJ, Woodward FI (2001) Vegetation and the Terrestrial Carbon Cycle: Modelling the first 400 Million Years. Cambridge University PressGoogle Scholar
  15. Blackford JC, Burkill PH (2002) Planktonic community structure and carbon cycling in the Arabian Sea as a result of monsoonal forcing: the application of a generic model. Journal of Marine Systems 36:239–267Google Scholar
  16. Blackford JC, Allen JI, Gilbert FJ (2004) Ecosystem dynamics at six contrasting sites: a generic modeling study. Journal of Marine Systems 52:191–215Google Scholar
  17. Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forest vegetation on global climate. Nature 359:716–718Google Scholar
  18. Bondeau A, Kicklighter DW, Kaduk J (1999) Comparing global models of terrestrial net primary productivity (NPP): importance of vegetation structure on seasonal NPP estimates. Global Change Biology 5:35–45Google Scholar
  19. Bondeau A, Smith PC, Zaehle S, Schaphoff S, Lucht W, Cramer W, Gerten D, Lotze-Campen H, Müller C, Reichstein M, Smith B (in press) Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change BiologyGoogle Scholar
  20. Bopp L, Le Quéré C, Heimann M, Manning AC, Monfray P (2002) Climate-induced oceanic oxygen fluxes: Implications for the contemporary carbon budget. Global Biogeochemical Cycles 16: doi:10.1029/2001GB001445Google Scholar
  21. Botkin DB, Janak JF, Wallis JR (1972) Some ecological consequences of a computer model of forest growth. J Ecol 60:849–872Google Scholar
  22. Botta A, Foley JA (2002) Effects of climate variability and disturbances on the Amazonian terrestrial ecosystems dynamics. Global Biogeochemical Cycles 16(4): doi:10.1029/2000GB001338Google Scholar
  23. Bousquet P, Peylin P, Ciais P, Le Quéré C, Friedlingstein P, Tans P (2000) Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science 290:1342–1346Google Scholar
  24. Box EO (1981) Predicting physiognomic vegetation types with climate variables. Vegetatio 45:127–139Google Scholar
  25. Broecker WS, Lynch-Stieglitz J, Clark E, Hadjas I, Bonani G (2001) What caused the atmosphere’s CO2 content to rise during the last 8000 years? Geochem. Geosyst. 2: doi:2001GC00177Google Scholar
  26. Brovkin V, Bendtsen J, Claussen M, Ganopolski A, Kubatzki A, Petoukhov V, Andreev A (2002) Carbon cycle, vegetation, and climate dynamics in the Holocene: Experiments with the CLIMBER-2 model Global Biogeochemical Cycles 16: 1139; doi:10.1029/2001GB001662Google Scholar
  27. Bugmann H (1996) A simplified forest model to study species composition along climate gradients. Ecology 77:2055–2074Google Scholar
  28. Bugmann H, Solomon AM (2000) Explaining forest composition and biomass across multiple biogeographical regions. Ecological Applications 10:95–114Google Scholar
  29. Cao M, Woodward FI (1998) Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393:249–252Google Scholar
  30. Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO (1999) Changing sources of nutrient during four million years of ecosystem development. Nature 397:491–497Google Scholar
  31. Clark JS, Fastie C, Hurtt G, Jackson ST, Johnson C, King GA, Lewis M, Lynch J, Pacala S, Prentice C, Schupp EW, Webb T, Wyckoff (1998) Reid’s paradox of rapid plant migration — Dispersal theory and interpretation of paleoecological records. Bioscience 48:13–24Google Scholar
  32. Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agricultural and Forest Meteorology 54:107–136Google Scholar
  33. Collatz GJ, Ribas-Carbo M, Berry JA (1992) Coupled photosynthesis stomatal conductance model for leaves of C4 plants. Australian Journal of Plant Physiology 19:519–538Google Scholar
  34. Comins HN, McMurtrie RE (1993) Long-term response of nutrient-limited forests to CO2-enrichment; equilibrium behaviour of plant-soil models. Ecological Applications 3:666–681Google Scholar
  35. Cowan IR (1977) Stomatal behaviour and environment. Advances in Botanical Research 4:117–228Google Scholar
  36. Cowling SA (1999) Simulated effects of low atmospheric CO2 on structure and composition of North American vegetation at the Last Glacial Maximum. Global Ecology and Biogeography 8:81–93Google Scholar
  37. Cox PM (2001) Description of the TRIFFID dynamic global vegetation model, Tech. Note 24, Hadley Centre, Bracknell, UK, pp 16Google Scholar
  38. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187Google Scholar
  39. Cramer W, Kicklighter DW, Bondeau A, Moore B, Churkina C, Nemry B, Ruimy A, AL S (1999) Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Global Change Biology 5:1–15Google Scholar
  40. Cramer W, Bondeau A, Woodward FI, Prentice C, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology 7:357–374Google Scholar
  41. Cramer W, Bondeau A, Schaphoff S, Lucht W, Smith B, Sitch S (2004) Tropical forests and the global carbon cycle: impacts of atmospheric carbon dioxide, climate change and rate of deforestation. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 359:331–343Google Scholar
  42. Daly C, Bachelet D, Lenihan JM, Neilson RP, Parton W, Ojima D (2000) Dynamic simulation of tree-grass interactions for global change studies. Ecological Applications 10:449–469Google Scholar
  43. Dargaville RJ, Heimann M, McGuire AD, Prentice IC, Kicklighter DW, Joos F, Clein JS, Esser G, Foley J, Kaplan J, Meier RA, Melillo JM, Moore III B, Ramankutty N, Reichenau T, Schloss A, Sitch S, Tian H, Williams LJ, Wittenberg U (2002) Evaluation of terrestrial carbon cycle models with atmospheric CO2 measurements: Results from transient simulations considering increasing CO2, climate, and land-use effects. Global Biogeochemical Cycles 16: 1092, doi:1010.1029/2001GB001426Google Scholar
  44. DeFries RS, Hansen MC, Townsend JRG, Janetos AC, Loveland TR (2000) A new global 1-km dataset of percentage tree cover derived from remote sensing. Global Change Biology 6:247–254Google Scholar
  45. Delire C, Levis S, Bonan G, Foley JA, Coe M, Vavrus S (2002) Comparison of the climate simulated by the CCM3 coupled to two different land-surface models Climate Dynamics 19:657–669Google Scholar
  46. DeLucia EH, Hamilton JG, Naidu SL, Thomas RB, Andrews JA, Finzi A, Lavine M, Matamala R, Mohan JE, Hendrey GR, Schlesinger WH (1999) Net primary production of a forest ecosystem with experimental CO2 enrichment. Science 284:1177–1179Google Scholar
  47. Denning AS, Holzer M, Gurney KR, Heimann M, Law RM, Rayner PJ, Fung IY, Fan S, Taguchi S, Friedlingstein P, Balkanski Y, Maiss M, Levin I (1999) Three-dimensional transport and concentration of SF6: A model intercomparison study (Transcom 2). Tellus 51B: 266–297Google Scholar
  48. Dewar RC (1996) The correlation between plant growth and intercepted radiation: an interpretation in terms of optimal plant nitrogen content. Annuals of Botany 78:125–136Google Scholar
  49. Díaz S, Cabido M (1997) Plant functional types and ecosystem function in relation to global change. J Vegetat Sci 8:463–474Google Scholar
  50. Díaz S, Cabido M, Casanoves F (1999a) Functional implications of trait-environment linkages in plant communities. In: Weiher E, Keddy P (eds) Ecological assembly rules — Perspectives, advances, retreats. Cambridge University Press, Cambridge, pp 338–362Google Scholar
  51. Díaz S, Cabido M, Zak M, Martínez Carretero E, Araníbar J (1999b) Plant functional traits, ecosystem structure and land-use history along a climatic gradient in central-western Argentina. Journal of Vegetation Science 10:651–660Google Scholar
  52. Díaz S, McIntyre S, Lavorel S, Pausas JG (2002) Does hairiness matter in Harare? Resolving controversy in global comparisons of plant trait responses to ecosystem disturbance. New Phytologist 154:7–9Google Scholar
  53. Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Marti G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Diez P, Funes G, Hamzehee B, Khoshnevi M, Perez-Harguindeguy N, Perez-Rontome MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martinez M, Romo-Diez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004) The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science 15:295–304Google Scholar
  54. Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere-Atmosphere Transfer Scheme (BATS) Version 1E as coupled to the NCAR Community Climate Model, Tech. Note NCAR/TN-383+STR, Natl. Cent. For Atmos. Res., Boulder, Colorado, pp 72Google Scholar
  55. Dolman AJ, Schulze ED, Valentini R (2003) Analyzing carbon flux measurements. Science 301(5635):916–916Google Scholar
  56. Dufresne JL, Friedlingstein P, Berthelot M, Bopp L, Ciais P, Fairhead L, Le Treut H, Monfray P (2002) On the magnitude of positive feedback between future climate change and the carbon cycle. Geophysical Research Letters 29:43.41–43.44Google Scholar
  57. Emanuel WR, Shugart HH, Stevenson MP (1985). Climatic change and the broad-scale distribution of terrestrial ecosystem complexes. Climatic Change 7:29–43Google Scholar
  58. Falge E, Baldocchi D, Tenhunen J, Aubinet M, Bakwin P, Berbigier P, Bernhofer C, Burba G, Clement R, Davis KJ, Elbers JA, Goldstein AH, Grelle A, Granier A, Gudmundsson J, Hollinger D, Kowalski AS, Katul G, Law BE, Malhi Y, Meyers T, Monson RK, Munger JW, Oechel W, Paw UKT, Pilegaard K, Rannik U, Rebmann C, Suyker A, Valentini R, Wilson K, Wofsy S (2002) Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology 113:53–74Google Scholar
  59. Fan S, Gloor M, Mahlman J, Pacala S, Sarmiento J, Takahashi T, Tans P (1998) A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282:442–446Google Scholar
  60. Farquhar GD, van Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90Google Scholar
  61. Field CB, Chapin FS, Matson PA, Mooney HA (1992) Responses of terrestrial ecosystems to the changing atmosphere: a resource based approach. Annual Review of Ecology and Systematics 23:201–235Google Scholar
  62. Field CB, Randerson JT, Malmström CM (1995) Global net primary production: combining ecology and remote sensing. Remote Sensing of Environment 51:74–88Google Scholar
  63. Field CB, Raupach MR, Victoria R (2004) The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World. In: Field CB, Raupach MR (eds) The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World. Island Press, Washington, D.C., pp 1–13Google Scholar
  64. Finnegan JJ, Raupach MR (1987) Transfer processes in plant canopies in relation to stomatal characteristics. In: Zeiger, E. Farquhar GD, Cowan IR (eds) Stomatal Function, Stanford University Press, Stanford, pp 385–429Google Scholar
  65. Flückiger J, Monnin E, Stauffer B, Schwander J, Stocker TF, Chappellaz J, Raynaud D, Barnola J-M (2002) High-resolution Holocene N2O ice core record and its relationship with CH4 and CO2. Global Biogeochemical Cycles 16: doi:10.1029/2001GB001417Google Scholar
  66. Foley JA, Prentice IC, Ramankutty N, Levis S, Pollard D, Sitch S, Haxeltine A (1996) An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles 10:603–628Google Scholar
  67. Foley JA, Levis S, Prentice IC, Pollard D, Thompson SL (1998) Coupling dynamic models of climate and vegetation. Global Change Biology 4:561–579Google Scholar
  68. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz CJ, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574Google Scholar
  69. Friedlingstein P, Dufresne J-L, Cox PM, Rayner P (2003)How positive is the feedback between climate change and the carbon cycle? Tellus B55 692–700Google Scholar
  70. Friend AD, Stevens AK, Knox RG, Cannell MGR (1997) A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecological Modelling 95:249–287Google Scholar
  71. Fulton MR, Prentice IC (1997) Edaphic controls on the boreonemoral forest mosaic. Oikos 78:291–298Google Scholar
  72. Gerten D, Schaphoff S, Haberlandt U, Lucht W, Sitch S (2004) Terrestrial vegetation and water balance — hydrological evaluation of a dynamic global vegetation model. J Hydrol 286:249–270Google Scholar
  73. Gitay H, Noble IR (1997) What are functional types and how should we seek them? In: Smith TM, Shugart HH, Woodward FI (eds) Plant functional types: their relevance to ecosystem properties and global change. Cambridge University Press, Cambridge, pp 3–19Google Scholar
  74. Gordon WS, Famiglietti JS (2004) Response of the water balance to climate change in the United States over the 20th and 21st centuries: Results from the VEMAP Phase 2 model intercomparisons, Global Biogeochemical Cycles 18: GB1030, doi:10.1029/2003GB002098Google Scholar
  75. Gordon WS, Famiglietti JS, Fowler NA, Kittel TGF, Hibbard KA (2004) Validation of simulated runoff from six terrestrial ecosystem models: Results from VEMAP. Ecological Applications 14:527–545Google Scholar
  76. Gu LH, Baldocchi D, Verma SB, Black TA, Vesala T, Falge EM, Dowty PR (2002) Advantages of diffuse radiation for terrestrial ecosystem productivity. Journal of Geophysical Research-Atmospheres 107: ACL 2.1–2.23Google Scholar
  77. Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay WA, Pierce T, Scholes B, Seinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global model of natural volatile organic compound emissions. Journal of Geophysical Research 100:8873–8892Google Scholar
  78. Gurney KR, Law RM, Denning AS, Rayner PJ, Baker D, Bousquet P, Bruhwiler L, Chen YH, Ciais P, Fan S, Fung IY, Gloor M, Heimann M, Higuchi K, John J, Kowalczyki E, Maki T, Maksyutov S, Peylin P, Prather M, Pak BC, Sarmiento J, Taguchi S, Takahashi T, Yuen CW (2003) Transcom 3 CO2 Inversion Intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information. Tellus 55B:555–579Google Scholar
  79. Gurney KR, Law RM, Denning AS, Rayner PJ, Pak B, TransCom3 L2 modelers (2004) TransCom3 Inversion Intercomparison: Control results for the estimation of seasonal carbon sources and sinks. Global Biogeochemical Cycles 18: GB1010, doi:10.1029/2003GB002111Google Scholar
  80. Gurvich DE, Díaz S, Falczuk V, Perez-Harguindeguy N, Cabido M, Thorpe PC (2002) Foliar resistance to simulated extreme temperature events in contrasting plant functional and chorological types. Global Change Biology 8:1139–1145Google Scholar
  81. Hamilton JG, George K, DeLucia EH, Naidu SL, Finzi AC, Schlesinger WH (2002) Forest carbon balance under elevated CO2. Oecologia 131:250–260Google Scholar
  82. Harrison SP, Prentice IC (2003) Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations. Global Change Biology 9:983–1004Google Scholar
  83. Harrison SP, Prentice IC, Barboni D, Kohfeld KE, Ni J, Sutra J-P (submitted) Towards a global plant functional type classification for ecosystem modelling, palaeoecology and climate impacts research. Journal of Vegetation ScienceGoogle Scholar
  84. Haxeltine A, Prentice IC (1996a) BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochemical Cycles 10:693–709Google Scholar
  85. Haxeltine A, Prentice IC (1996b) A general model for the light-use efficiency of primary production. Functional Ecology 10:551–561Google Scholar
  86. Haxeltine A, Prentice IC, Creswell ID (1996) A coupled carbon and water flux model to predict vegetation structure. Journal of Vegetation Science 7:651–666Google Scholar
  87. Heimann M, Esser G, Haxeltine A, Kaduk J, Kicklighter DW, Knorr W, Kohlmaier GH, McGuire AD, Melillo J, III B M, Otto RD, Prentice IC, Sauf W, Schloss A, Sitch S, Wittenberg U, Würth G (1998) Evaluation of terrestrial carbon cycle models through simulations of the seasonal cycle of atmospheric CO2: first results of a model intercomparison study. Global Biogeochemical Cycles 12:1–24Google Scholar
  88. Hendry GR, Ellsworth DS, Lewin KF, Nagy J (1999) A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO2. Global Change Biology 5: doi: 10.1046/j.1365-2486.1999.00228.xGoogle Scholar
  89. Hicke JA, Asner GP, Randerson JT, Tucker C, Los S, Birdsey R, Jenkins JC, Field C (2002) Trends in North American net primary productivity derived from satellite observations, 1982–1998. Global Biogeochemical Cycles 16: doi:10.1029/2001GB001550Google Scholar
  90. Hickler T, Prentice IC, Smith B, Sykes MT (2004a) Simulating the effects of elevated CO2 on productivity at the Duke Forest FACE experiment: a test of the dynamic global vegetation model LPJ. In: Hickler T, Towards an integrated ecology through mechanistic modelling of ecosystem structure and functioning. Meddelanden från Lunds Universitets Geografiska Institution. Avhandlingar: 153Google Scholar
  91. Hickler T, Smith B, Sykes MT, Davis M, Sugita S, Walker K (2004b) Using a generalized vegetation model to simulate vegetation dynamics in northeastern USA. Ecology 85:519–530Google Scholar
  92. Higgins SI, Clark JS, Nathan R, Hovestadt T, Schurr F, Fragoso JMV, Aguiar MR, Ribbens E, Lavorel S (2003) Forecasting plant migration rates: managing uncertainty for risk assessment. Journal of Ecology 91:341–347Google Scholar
  93. Holdridge LR (1947) Determination of world plant formations from simple climatic data. Science 105:367–368Google Scholar
  94. Houghton RA (2003) Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus 55B:378–390Google Scholar
  95. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (Eds.) (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, UKGoogle Scholar
  96. House JI, Prentice IC, Ramankutty N, Houghton RA, Heimann M (2003) Reconciling apparent inconsistencies in estimates of terrestrial CO2 sources and sinks. Tellus 55:345–363Google Scholar
  97. Hungate BA, Dukes JS, Shaw MB, Luo Y, Field CB (2003) Nitrogen and Climate Change. Science 302:1512–1513Google Scholar
  98. Indermühle A, Stocker TF, Joos F, Fischer H, Smith HJ, Wahlen M, Deck B, Mastroianni D, Tschumi J, Blunier T, Meyer R, Stauffer B (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398:121–126Google Scholar
  99. Jarvis PG (1976) The interpretation of the variances in leaf water potential and stomatal conductance found in canopies in the field. Phil. Trans. Roy. Soc. Lond. B273:593–610Google Scholar
  100. Jones CD, Cox PM (2001) Modeling the volcanic signal in the atmospheric CO2 record. Global Biogeochemical Cycles 15:453–465Google Scholar
  101. Jones CD, Cox PM, Essery RLH, Roberts DL, Woodage MJ (2003) Strong carbon cycle feedbacks in a climate model with interactive CO2 and sulphate aerosols. Geophysical Research Letters 30:1479, doi:1410.1029/2003GL016867Google Scholar
  102. Joos F, Prentice IC, Sitch S, Meyer R, Hooss G, Plattner G-K, Gerber S, Hasselmann K (2001) Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Global Biogeochemical Cycles 15:891–907Google Scholar
  103. Joos F, Gerber S, Prentice IC, Otto-Bliesner BL, Valdes PJ (2004) Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum. Global Biogeochemical Cycles 18: GB2002, doi: 2010.1029/2003GB002156Google Scholar
  104. Kaduk J, Heimann M (1996) A prognostic phenology model for global terrestrial carbon cycle models, Climate Research 6:1–19Google Scholar
  105. Kaminski T, Heimann M (2001) Inverse modeling of atmospheric carbon dioxide fluxes. Science 294:259aGoogle Scholar
  106. Kaplan JO (2002) Wetlands at the Last Glacial Maximum: Distribution and methane emissions. Geophysical Research Letters 29: doi: 10.1029/2001GL013366Google Scholar
  107. Kaplan JO, Prentice IC, Knorr W, Valdes PJ (2002) Modeling the dynamics of terrestrial carbon storage since the Last Glacial Maximum. Geophysical Research Letters 29:2074, DOI: 2010.1029/2002GL015230Google Scholar
  108. Kaplan JO, Bigelow NH, Prentice IC, Harrison SP, Bartlein PJ, Christensen TR, Cramer W, Matveyeva NV, McGuire AD, Murray DF, Razzhivin VY, Smith B, Walker DA, Anderson PM, Andreev AA, Brubaker LB, Edwards ME, Lozhkin AV (2003) Climate change and arctic ecosystems II: Modeling, paleodata-model comparisons, and future projections. Journal of Geophysical Research 108:8171, doi: 8110.1029/2002JD002559Google Scholar
  109. Kicklighter DW, Bruno M, Donges S, Esser G, Heimann M, Helfrich J, Ift F, Joos F, Kaduk J, Kohlmaier GH, McGuire AD, Melillo JM, Meyer R, Moore B, Nadler A, Prentice IC, Sauf W, Schloss AL, Sitch S, Wittenberg U, Wurth G (1999) A first-order analysis of the potential role of CO2 fertilization to affect the global carbon budget: a comparison of four terrestrial biosphere models. Tellus Series B-Chemical and Physical Meteorology 51:343–366Google Scholar
  110. Klein Goldewijk K (2001) Estimating global land use change over the past 300 years: the HYDE database. Global Biogeochemical Cycles 15:417–433Google Scholar
  111. Knorr W (2000) Annual and interannual CO2 exchanges of the terrestrial biosphere: process-based simulations and uncertainties. Global Ecology and Biogeography 9:225–252Google Scholar
  112. Knorr W, Heimann M (1995) Impact of drought stress and other factors on seasonal land biosphere CO2 exchange studied through an atmospheric tracer transport model. Tellus Series B-Chemical and Physical Meteorology 47:471–489Google Scholar
  113. Knorr W, Heimann M (2001) Uncertainties in global terrestrial biosphere modeling. Part II: global constraints for a process-based vegetation model. Global Biogeochemical Cycles 15:227–246Google Scholar
  114. Köppen W (1931) Grundriss der Klimakunde. Walter de Gruyter, BerlinGoogle Scholar
  115. Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles 19: GB1015, doi:10.1029/2003GB002199Google Scholar
  116. Kucharik CJ, Brye KR (2003) Integrated BIosphere Simulator (IBIS) yield and nitrate loss predictions for Wisconsin maize receiving varied amounts of nitrogen fertilizer. J Environ Qual 32:247–268Google Scholar
  117. Kucharik CJ, Foley JA, Delire C, Fisher VA, Coe MT, Lenters JD, Young-Molling C, Ramankutty N, Norman JM, Gower ST (2000) Testing the performance of a Dynamic Global Ecosystem Model: Water balance, carbon balance, and vegetation structure. Global Biogeochemical Cycles 14:795–825Google Scholar
  118. Lavorel S, Cramer W (1999) Plant functional response to land use and natural disturbance. Journal of Vegetation Science 10:604–732Google Scholar
  119. Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16:545–556Google Scholar
  120. Lavorel S, McIntyre S, Landsberg J, Forbes TDA (1997) Plant functional classifications: from general groups to specific groups based on response to disturbance. Tree 12:474–478Google Scholar
  121. Lavorel S, Díaz S, Cornelissen H, Garnier E, Harrison SP, McIntyre S, Pausas JG, Pérez-Harguindeguy N, Urcelay C (2007) Plant functional types: are we getting any closer to the Holy Grail? In: Canadell J, Pataki D, Pitelka L (eds) Terrestrial ecosystems in a changing world. IGBP Series, Springer-Verlag, Heidelberg, this volumeGoogle Scholar
  122. Law R, Chen YH, Gurney KR, Rayner P, Denning AS, TransCom3 modelers (2003) TransCom3 CO2 inversion intercomparison: 2. Sensitivity of annual mean results to data choices. Tellus 55B:512–521Google Scholar
  123. Le Quéré C, Harrison SP, Prentice IC, Buitenhuis ET, Aumont O, Bopp L, Claustre H, Cotrim da Cunha L, Geider R, Giraud X, Klaas C, Kohfeld KE, Legendre L, Manizza M, Platt T, Rivkin R, Sathyendranath S, Uitz J, Watson AJ, Wolf-Gladrow D (in press) Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Global Change BiologyGoogle Scholar
  124. Lenihan JM, Daly C, Bachelet D, Neilson RP (1998) Simulating broad-scale fire severity in a dynamic global vegetation model. Northwest Science 72:91–103Google Scholar
  125. Lieth H (1975) Modeling the Primary Productivity of the World. In: Lieth H, Whittaker RH (eds) Primary Productivity of the Biosphere, Springer-Verlag, Berlin, pp 237–263Google Scholar
  126. Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide. Annual Review of Plant Biology 55:591–628Google Scholar
  127. Lucht W, Prentice IC, Myneni RB, Sitch S, Friedlingstein P, Cramer W, Bousquet P, Buermann W, Smith B (2002) Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296:1687–1689Google Scholar
  128. MA (Millenium Ecosystem Assessment) (2003) Ecosystems and Human Well-being: A Framework for Assessment. Island Press, Washington DCGoogle Scholar
  129. McGuire AD, Sitch S, Clein JS, Dargaville R, Esser G, Foley J, Heimann M, Joos F, Kaplan J, Kicklighter DW, Meier RA, Melillo JM, Moore III B, Prentice IC, Ramankutty N, Reichenau T, Schloss A, Tian H, Williams LJ, Wittenberg U (2001) Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochemical Cycles 15:183–206Google Scholar
  130. Melillo JM, McGuire AD, Kicklighter DW, Moore B, Vorosmarty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production. Nature 363:234–240Google Scholar
  131. Monteith JL (1995) Accommodation between transpiring vegetation and the convective boundary layer. J Hydrol 166:251–263Google Scholar
  132. Moorcroft PR, Hurtt GC, Pacala. SW (2001) A method for scaling vegetation dynamics: the ecosystem demography model (ED). Ecological Monographs 71:557–585Google Scholar
  133. Morales P, Sykes MT, Prentice IC, Smith P, Smith B, Bugmann H, Zierl B, Friedlingstein P, Viovy N, Sabate S, Sanchez A, Pla E, Gracia CA, Sitch S, Arneth A, Ogee J (submitted) Comparing and evaluating process-baserd ecosystem model predictions of carbon and water fluxes in major European forest biomes. Global Change BiologyGoogle Scholar
  134. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702Google Scholar
  135. Nabuurs GJ, Schelhas MJ, Mohren GMJ, Field CB (2003) Temporal evolution of the European Forest sector carbon sink 1950–1999. Global Change Biology 9:152–160Google Scholar
  136. Neilson RP (1995) A model for predicting continental scale vegetation distribution and water balance. Ecological Applications 5:362–385Google Scholar
  137. Neilson RP, Marks D (1994) A global perspective of regional vegetation and hydrologic sensitivities and risks from climatic change. Journal of Vegetation Science 5:715–730Google Scholar
  138. Neilson RP, Running SW (1996) Global dynamic vegetation modellingg: coupling biogeochemistry and biogeography models. pp 451–465 in Walker B, Steffen W, (eds.) Global Change and Terrestrial Ecosystems. Cambridge University Press, CambridgeGoogle Scholar
  139. Neilson RP, King GA, Koerper G (1992) Toward a rule based biome model. Landscape Ecology 7:27–43Google Scholar
  140. Nemani R, Running SW (1996) Implementation of a hierarchical global vegetation classification in ecosystem function models. Journal of Vegetation Science 7:337–346Google Scholar
  141. Nemani R, White M, Thornton P, Nishida K, Reddy S, Jenkins J, Running S (2002) Recent trends in hydrologic balance have enhanced the terrestrial carbon sink in the United States. Geophysical Research Letters 29: Art. No. 1468Google Scholar
  142. New M, Hulme M, Jones P (2000) Representing twentieth-century space-time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. Journal of Climate 13:2217–2238Google Scholar
  143. Norby RJ, Wullschleger SD, Gunderson CA, Johnson DW, Ceulemans R (1999) Tree responses to rising CO2 in field experiments: implications for the future forest. Plant Cell and Environment 22:683–714Google Scholar
  144. Notaro M, Liu Z, Gallimore R, Vavrus SJ, Kutzbach JE, Prentice IC, Jacob RL (2004) Simulated and observed pre-Industrial to modern vegetation and climate changes. Journal of Climate 18:3650–3671Google Scholar
  145. Nowak RS, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated atmospheric CO2 — do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist 162:253–280Google Scholar
  146. Overpeck JT, Whitlock C, Huntley B (2003) Terrestrial biosphere dynamics in the climate system: past and future. In: Alverson K, Bradley R, Pedersen T (eds) Paleoclimate, Global Change and the Future (IGBP Synthesis Volume), Springer-Verlag, Berlin, pp 81–111Google Scholar
  147. Pacala SW, Canham CD, Saponara J, Silander Jr. JA (1993) Forest models defined by field measurements: I. The design of a northeastern forest simulator. Canadian Journal of Forest Research 23:1980–1998Google Scholar
  148. Pacala SW, Canham CD, Saponara J, Silander Jr. JA, Kobe RK, Ribens E (1996) Forest models defined by field measurements: estimation, error analysis and dynamics. Ecological Monographs 66:1–43Google Scholar
  149. Pan Y, McGuire AD, Melillo JM, Kicklighter DW, Sitch S, Prentice IC (2002) A biogeochemistry-based dynamic vegetation model and its application along a moisture gradient in the continental United States. Journal of Vegetation Science 13:369–382Google Scholar
  150. Parton WJ, Scurlock JMO, Ojima DS, Gilmanov TG, Scholes RJ, Schimel DS, Kirchner T, Menaut J-C, Seastedt T, Garcia Moya E, Apinan Kamnalrut, Kinyamario JI (1993) Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles 7:785–809Google Scholar
  151. Pastor J, Post WM (1985) Development of a linked forest productivity-soil process model. ORNL/TM-9519. Oak Ridge, TennesseeGoogle Scholar
  152. Peylin P, Bousquet P, Le Quéré C, Sitch S, Friedlingstein P, McKinley G, Gruber N, Rayner P, Ciais P, (2005) Multiple constraints on regional CO2 flux variations over land and oceans. Global Biogeochemical Cycles 19: GB1011, doi:10.1029/2003GB002214Google Scholar
  153. Pitelka LF, Plant Migration Workshop Group (1997) Plant migration and climate change. American Scientist 85:464–473Google Scholar
  154. Potter CS, Klooster SA (1999) Dynamic global vegetation modeling for prediction of plant functional types and biogenic trace gas fluxes. Global Ecology and Biogeography 8:473–488Google Scholar
  155. Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster S (1993) Terrestrial Ecosystem Production — A Process Model-Based On Global Satellite And Surface Data Global Biogeochemical Cycles 7:811–841Google Scholar
  156. Potter CS, Wang S, Nikolov NT, McGuire AD, Liu J, King AW, Kimball JS, Grant RF, Frolking SE, Clein JS, Chen JM, Amthor JS (2001) Comparison of boreal ecosystem model sensitivity to variability in climate and forest site parameters. Journal of Geophysical Research 106: D24, 33, 671 (2000JD000224)Google Scholar
  157. Prentice IC (2001) Controls on the primary productivity of terrestrial ecosystems. In: Geider RJ, DeLucia EH, Falkowski PG, Finzi A, Grime JP, Grace J, Kana TM, LaRoche J, Long SP, Osborne BA, Platt T, Prentice IC, Raven JA, Schlesinger WH, Smetacek V, Stuart V, Sathyendranath S, Thomas RB, Vogelmann TC, Williams P, Woodward FI (2001) Primary productivity of planet Earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Global Change Biology 7:849–882Google Scholar
  158. Prentice IC, Leemans R (1990) Pattern and process and the dynamics of forest structure: a simulation approach. Journal of Ecology 78:340–355Google Scholar
  159. Prentice IC, Raynaud D (2001) Paleogeochemistry, in Global Biogeochemiscal Cycles in the Climate System (eds. Schulze ED, Heinmann M, Holland E. et al.), San Diego: Academic Press, 2001, 87–94Google Scholar
  160. Prentice IC, Solomon AM (1991) Vegetation models and global change. In: Bradley RS (ed.) Global changes of the past: Papers arising from the 1989 OIES Global Change Institute; Snowmass, Colorado, 24. July-4. August 1989. UCAR, Office for Interdisciplinary Earth Studies, Boulder, Colorado. 365–384Google Scholar
  161. Prentice IC, van Tongeren O, de Smidt JT (1987) Simulation of heathland vegetation dynamics. Journal of Ecology 75:203–219Google Scholar
  162. Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography 19:117–134Google Scholar
  163. Prentice IC, Sykes MT, Cramer W (1993). A simulation model for the transient effects of climate change on forest landscapes. Ecological Modelling 65:51–70Google Scholar
  164. Prentice IC, Heimann M, Sitch S (2000) The carbon balance of the terrestrial biosphere: Ecosystem models and atmospheric observations Ecological Applications 10(6):1553–1573Google Scholar
  165. Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ, Kheshgi HS, Le Quéré C, Scholes RJ, Wallace DWR (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds.) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 185–225Google Scholar
  166. Prentice IC, Le Quéré C, Buitenhuis ET, House JI, Klaas C, Knorr W (2004) Biosphere dynamics: questions for Earth System modellingg. In: Hawkesworth CJ, Sparks RSJ (eds) The State of the Planet: Frontiers and Challenges. AGU MonographGoogle Scholar
  167. Raunkiær C (1909) Formationsundersøgelse og formationstatistik. Bot. Tidsskr. 30:20–80Google Scholar
  168. Raunkiær C (1913) Formationsstatistike Undersøgelser paa Skagens Odde. Botanisk Tidsskrift. Dansk Botanisk Forening 33:197–243Google Scholar
  169. Raunkiær C (1934) The life-forms of plants and statistical plant geography. Clarendon Press, OxfordGoogle Scholar
  170. Ridgwell A, Marshall S, Gregson K (1999) Consumption of atmospheric methane by soils: a process-based model. Global Biogeochemical Cycles 13:59–70Google Scholar
  171. Rödenbeck C, Houweling S, Gloor M, Heimann M (2003) CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos. Chem. Phys. 3:1919–1964Google Scholar
  172. Roderick ML, Farquhar GD, Berry SL, Noble IR (2001) On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 129:213–232Google Scholar
  173. Ruddiman WF (2003). The Anthropogenic Greenhouse Era Began Thousands of Years Ago. Climatic Change, 61:261–293Google Scholar
  174. Ruimy A, Dedieu G, Saugier B (1996) TURC: A diagnostic model of continental gross primary productivity and net primary productivity Global Biogeochemical Cycles 10:269–285Google Scholar
  175. Running SW, Gower ST (1991) FOREST-BGC, a general model of forest ecosystem processes for regional applications. 2. Dynamic carbon allocation and nitrogen budgets. Tree Physiology 9:147–160Google Scholar
  176. Running SW, Hunt ER (1993) Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models. Scaling processes between leaf and landscape levels. In: Ehleringer JR, Field CB (eds) Scaling Physiological Processes: Leaf to Globe. Academic Press, San Diego, 141–158Google Scholar
  177. Ryan MG (1991) Effects of climate change on plant respiration. Ecological Applications 1:157–167Google Scholar
  178. Schäfer KVR, Oren R, Ellsworth DS, Lai CT, Herrick JD, Finzi AC, Richter DD, Katul GG (2003) Exposure to an enriched CO2 atmosphere alters carbon assimilation and allocation in a pine forest ecosystem. Global Change Biology 9:10, 1378–1400Google Scholar
  179. Schaphoff S, Lucht W, Gerten D, Sitch S, Cramer W, Prentice IC (2006) Terrestrial biosphere carbon storage under alternative climate projections. Climatic Change 74:97–122, doi: 10.1007/s10584-005-9002-5Google Scholar
  180. Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore III B, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–172Google Scholar
  181. Scholze M, Kaplan JO, Knorr W, Heimann M (2003) Climate and interannual variability of the atmosphere-biosphere 13CO2 flux. Geophysical Research Letters 30: 1097, doi:10.1029/2002GL015631Google Scholar
  182. Schulze E-D (1982) Plant life forms and their carbon, water and nutrient relations Encyclopedia of Plant Physiology. Springer-Verlag, Berlin, Heidelberg, 615–676Google Scholar
  183. Sellers PJ, Mintz Y, Sud YC, Dalcher A (1986) A simple biosphere model (SiB) for use within general circulation models. Journal of the Atmospheric Sciences 43:505–531Google Scholar
  184. Sernander R (1936) The primitive forest of Granskär and Fiby. Acta Phytogeogr. Suec. 8Google Scholar
  185. Shugart HH (1984) A Theory of Forest Dynamics. Springer-Verlag, New YorkGoogle Scholar
  186. Shugart HH, West DC (1977) Development of an Appalachian deciduous forest succession model and its application to assessment of impact of chestnut blight. Journal of Environmental Management 5:161–179Google Scholar
  187. Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology 9:161–185Google Scholar
  188. Smith B, Prentice IC, Sykes MT (2001) Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Global Ecology and Biogeography 10:621–637Google Scholar
  189. Specht RL (1972) Water use by perennial evergreen plant communities in Australia and Papua New Guinea. Australian Journal of Botany 20:273–299Google Scholar
  190. Sprugel DG (1976) Dynamic structure of wave-generated Abies balsamea forests in the northeastern United States. Journal of Ecology 64:889–911Google Scholar
  191. Sykes MT, Prentice IC, Smith B, Cramer W, Venevsky S (2001) An introduction to the European Terrestrial Ecosystem Modelling Activity. Global Ecology and Biogeography 10:581–593Google Scholar
  192. Tegen I, Harrison SP, Kohfeld KE, Prentice IC, Coe MT, Heimann M (2002) Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study. Journal of Geophysical Research-Atmospheres 107: 4576, doi:4510.1029/2001JD000963Google Scholar
  193. Thonicke K, Venevsky S, Sitch S, Cramer W (2001) The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model. Global Ecology and Biogeography 10:661–677Google Scholar
  194. Thonicke K, Prentice IC, Hewitt C (2005) Modelling glacial-interglacial changes in global fire regimes and trace gas emissions. Global Biogeochemical Cycles 19, GB3008, doi:10.1029/2004GB002278Google Scholar
  195. Townsend AR, Braswell BH, Holland EA, Penner JE (1996) Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen. Ecological Applications 6:806–814Google Scholar
  196. VEMAP Members (1995) Vegetation/ecosystem modeling and analysis project: Comparing biogeography and biogeochemistry models in a continental-scale study of terresttrial ecosystem responses to climate change and CO2 doubling. Global Biogeochemical Cycles 9:407–437Google Scholar
  197. Venevsky S, Thonicke K, Sitch S, Cramer W (2002) Simulating fire regimes in human-dominated ecosystems: Iberian Peninsula case study. Global Change Biology 8:984–998Google Scholar
  198. Walter H (1962) Die Vegetation der Erde in ökophysiologischer Betrachtung — Die tropischen und subtropischen Zonen, Band 1. VEB Gustav Fischer Verlag, JenaGoogle Scholar
  199. Walter H (1968) Die Vegetation der Erde in ökophysiologischer Betrachtung — Die gemässigten und arktischen Zonen, Band 2. VEB Gustav Fischer Verlag, JenaGoogle Scholar
  200. Warnant P, François L, Strivay D, Gérard J-C (1994) CARAIB: a global model of terrestrial biological productivity. Global Biogeochemical Cycles 8:255–270Google Scholar
  201. Watt AS (1947) Pattern and process in the plant community. Journal of Ecology 1/2:1–22Google Scholar
  202. Whittaker RH (1975) Communities and ecosystems, 2nd edition. Macmillan, New YorkGoogle Scholar
  203. Woodward FI (1987) Climate and Plant Distribution. Cambridge University Press, Cambridge, pp 174Google Scholar
  204. Woodward FI, Lomas ML (2004) Vegetation dynamics — simulating responses to climatic change, Biological Reviews 79, 1–28; DOI: 10.1017/S1464793103006419Google Scholar
  205. Woodward FI, Smith TM, Emanuel WR (1995) A global land primary productivity and phytogeography model. Global Biogeochemical Cycles 9:471–490Google Scholar
  206. Woodward FI, Lomas MR, Lee SE (2001) Predicting the future productivity and distribution of global terrestrial vegetation. In: Roy J, Mooney HA, Saugier B (eds) Terrestrial Global Productivity, Academic Press, San Diego, pp 521–541Google Scholar
  207. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827Google Scholar
  208. Zhou LM, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. Journal of Geophysical Research-Atmospheres 106: 20069–20083Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • I. Colin Prentice
    • 1
  • Alberte Bondeau
    • 2
  • Wolfgang Cramer
    • 2
  • Sandy P. Harrison
    • 3
  • Thomas Hickler
    • 4
  • Wolfgang Lucht
    • 2
  • Stephen Sitch
    • 5
  • Ben Smith
    • 4
  • Martin T. Sykes
    • 4
  1. 1.QUEST, Department of Earth SciencesUniversity of BristolBristolUK
  2. 2.Potsdam Institute for Climate Impact Research (PIK), TelegrafenbergPotsdamGermany
  3. 3.School of Geographical SciencesUniversity of BristolBristolUK
  4. 4.Department of Physical Geography & Ecosystems AnalysisLund UniversityLundSweden
  5. 5.Met Office (JCHMR)Crowmarsh-Gifford, WallingfordUK

Personalised recommendations