Frequent Ozone Depletion Resulting from Impacts of Asteroids and Comets

  • John W. Birks
  • Paul J. Crutzen
  • Raymond G. Roble

Abstract

The fossil record reveals that the evolution of life on Earth has been punctuated by a number of catastrophic events, of which one of the most devastating occurred at the end of the Cretaceous, approximately 66 million years ago. The postulate introduced in 1980 by Alvarez et al. (1980) that the collision of an approximately 10 km diameter asteroid with the Earth caused the extinction of the dinosaurs along with more than half of all plant and animal species has resulted in a greatly expanded research efforts in the area of catastrophic events (Alvarez et al. 1980).

Keywords

Shock Wave Impact Velocity Ozone Depletion Stratospheric Ozone Salt Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–1108CrossRefADSGoogle Scholar
  2. Bates DR, Nicolet M (1950) J Geophys Res 55:301ADSCrossRefGoogle Scholar
  3. Brasseur G, Solomon S (1984) Aerononomy of the middle atmosphere. Reidel, DordrechtGoogle Scholar
  4. Brasseur GP, Orlando JJ, Tyndall GS (1999) Atmospheric chemistry and global change. Oxford University Press, OxfordGoogle Scholar
  5. Chameides WL (1986) The role of lightning in the chemistry of the atmosphere. In: The Earth’s electrical environment. National Academy Press, Washington, pp 70–77Google Scholar
  6. Chapman CR (2004) The hazard of near-Earth asteroid impacts on Earth. Earth Planet Sci Lett 222:1–15CrossRefADSGoogle Scholar
  7. Croft SK (1982) A first-order estimate of shock heating and vaporization in oceanic impacts. Geol Soc Amer Spec Paper 190:143–152Google Scholar
  8. Crutzen PJ (1970) Quart J Roy Meteorol Soc 96:320CrossRefADSGoogle Scholar
  9. Crutzen PJ, Birks JW (1982) The atmosphere after a nuclear war: twilight at noon. Ambio 11:114–125Google Scholar
  10. Emiliani C, Kraus EB, Shoemaker EM (1981) Sudden death at the end of the Mesozoic. Earth Planet Sci Lett 55:317–334CrossRefADSGoogle Scholar
  11. Finlayson-Pitts BJ, Pitts JN, Jr (1986) Atmospheric chemistry: fundamentals and experimental techniques. Wiley, New YorkGoogle Scholar
  12. Finlayson-Pitts BJ, Ezell MJ, Pitts J (1989) Formation of chemically active chlorine compounds by reactions of atmospheric NaCl particles with gaseous N2O5 and ClONO2. Nature, 337:241–244CrossRefADSGoogle Scholar
  13. Foley HM, Ruderman MA (1973) Stratospheric NO production from past nuclear explosions. J Geophys Res 78:4441–4451ADSCrossRefGoogle Scholar
  14. Gilmore FR (1975) J Geophys Res 80:4553ADSCrossRefGoogle Scholar
  15. Hall JD, Mount, DW (1981) Prog Nucleic Acid Res Mol Biol 25:53–126CrossRefGoogle Scholar
  16. Haynes DR Tro NJ, George SM (1992) Condensation and evaporation of H2O on ice surfaces. J Phys Chem 96:8502–8509CrossRefADSGoogle Scholar
  17. Johnston HS (1971) Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust. Science 173:517–522CrossRefADSGoogle Scholar
  18. Johnston H, Whitten G, Birks J (1973) Effect of nuclear explosions on stratospheric nitric oxide and ozone. J Geophys Res 78:6107–6135CrossRefADSGoogle Scholar
  19. Jones EM, Kodis JW (1982) Atmospheric effects of large body impacts: the first few minutes. Geol Soc Amer Spec Paper 190:175–186Google Scholar
  20. Junge CE, Chagnon CW, Manson JE (1961) J Meteor 18:81Google Scholar
  21. Kring DA (1999) Meteor Planet Sci 34, A67–A68ADSCrossRefGoogle Scholar
  22. Kring DA, Melosh HJ, Hunten DM (1995) Meteoritics 30:530ADSGoogle Scholar
  23. Keller G (1989) Paleonoceanography 4:287–332ADSCrossRefGoogle Scholar
  24. Lee TT, Yeung ES (1992) Anal Chem 64:3045–3051CrossRefGoogle Scholar
  25. Lewis JS, Watkins GH, Hartman H, Prinn RG (1982) Chemical consequences of major impact events on Earth. Geol Soc Amer Spec Paper 190:215–221Google Scholar
  26. List RJ (1984) Smithsonian meteorological tables. Smithsonian Institution Press, WashingtonGoogle Scholar
  27. Livingston FE, Finlayson-Pitts BJ (1991) Geophys Res Lett 18:17–20ADSCrossRefGoogle Scholar
  28. Melosh HJ (1982) The mechanics of large meteoroid impacts in the Earth’s oceans. Geol Soc Amer Spec Paper 190:121–127Google Scholar
  29. Melosh HJ (1989) Impact cratering. Oxford University Press, New YorkGoogle Scholar
  30. Molina MJ, Rowland FS (1974) Nature 249:810CrossRefADSGoogle Scholar
  31. Mori T et al. (1991) Photochem Photobiol 54:225–232CrossRefGoogle Scholar
  32. Nachtway DF, Caldwell MM, Biggs RH, eds (1995) CIAP, monograph 5, US Department of Transportation, Impacts of Climatic Change on the BiosphereGoogle Scholar
  33. National Research Council (1975) Long term world-wide effects of multiple nuclear-weapon detonations. National Academy Press, WashingtonGoogle Scholar
  34. National Research Council (1985) The effects on the atmosphere of a major nuclear exchange. National Academy Press, WashingtonGoogle Scholar
  35. Nemtchinov IV, Svetsov VV, Kosarev IB, Golub AP, Popova OP, Shuvalov VV, Spalding RE, Jacobs C, Tagliaferri E (1997) Icarus 130:259–274CrossRefADSGoogle Scholar
  36. O’Keefe JD, Ahrens TJ (1982) The interaction of the Cretaceous/Tertiary extinction bolide with the atmosphere, ocean, and solid Earth. Geol Soc Amer Spec Pap 190:103–120Google Scholar
  37. O’Keefe JD, Ahrens TJ (1989) Impact production of CO2 by the Cretaceous/Tertiary extinction bolide and the resultant heating of the Earth. Nature 338:247–248CrossRefADSGoogle Scholar
  38. Pittock AB et al. (1985) Environmental consequences of nuclear war, vol I: Physical and atmospheric effects. Scientific Committee on Problems in the Environment, SCOPE 28, WileyGoogle Scholar
  39. Pope, KO, Baines KH, Ocampo AD, Ivanov B. (1997) Energy, volatile production, and climatic effects of the Chicxulub Cretaceous/Tertiary impact. J Geophs Res 102:21645–21664.CrossRefADSGoogle Scholar
  40. Prinn RJ, Fegley JB (1987) Bolide impacts, acid rain, and biospheric traumas at the Cretaceous-Tertiary boundary. Earth Planet Sci Lett 83:1–15CrossRefADSGoogle Scholar
  41. Robertson DS, McKenna MC, Toon OB, Hope S, Lillegraven JA (2004) Survival in the first hours of the Cenozoic. GSA Bulletin 116:760–768.CrossRefGoogle Scholar
  42. Roble RG (2000) Geophysical Monograph 123:53–67Google Scholar
  43. Roble RG, Ridley EC (1994) Geophys Res Lett 21:417–420CrossRefADSGoogle Scholar
  44. Setlow RB, Carrier WL (1966) J Mol Biol 17:237–254CrossRefGoogle Scholar
  45. Shoemaker EM, Wolfe RF, Shoemaker CS (1990) In: Sharpton VL, Ward PD (ed) Global catastrophes in Earth history. GSA Special Paper 247, Geological Society of America, Boulder, CO, pp 155–170Google Scholar
  46. Timonen RS, Chu LT, Leu M, Keyser LF (1994) Heterogeneous reaction of ClONO2(g)+NaCl(s) → Cl2(g) + NaNO3(s). J Phys Chem 98:9509–9517CrossRefGoogle Scholar
  47. Toon OB et al. (1982) Evolution of an impact-generated dust-cloud and its effects on the atmosphere. Geol Soc Amer Spec Pap 190:187–200Google Scholar
  48. Toon OB, Zahnle K, Turco RP, Covey C (1994) Environmental perturbations caused by impacts. In: Gehrels T (ed) Hazards due to comets and asteroids. Univ of Arizona Press, Tucson, pp 791–826Google Scholar
  49. Turco RP, Toon OB, Ackerman TP, Pollack JB, Sagan C (1983) Science 222:1283–1292CrossRefADSGoogle Scholar
  50. Wani AA, D’Ambrosio SM, Alvi NK (1987) Photchem Photobiol 46: 477–482CrossRefGoogle Scholar
  51. Whitten RC, Borucki WJ, Turco RP (1975) Nature 257:38CrossRefADSGoogle Scholar
  52. Witkin EM (1969) Annu Rev Microbiol 23:487–514CrossRefGoogle Scholar
  53. Zangmeister CD, Pemberton JE (1998) In situ monitoring of the NaCl +HNO3 surface reaction: the observation of mobile surface strings. J Phys Chem 102:8950–8953Google Scholar
  54. Zel’dovich YB, Raizer YP (1968) In: Elements of gas dynamics and the classical theory of shock waves. Academic Press, New York, pp 101–106Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • John W. Birks
    • 1
  • Paul J. Crutzen
    • 2
    • 3
  • Raymond G. Roble
    • 4
  1. 1.Department of Chemistry and Biochemistry and Cooperative Institute for Research in Environmental Sciences (CIRES)University of ColoradoBoulderUSA
  2. 2.Max-Planck-Institute for ChemistryMainzGermany
  3. 3.Scripps Institution of Oceanography, UC San DiegoLa JollaUSA
  4. 4.High Altitude ObservatoryNational Center for Atmospheric ResearchBoulderUSA

Personalised recommendations