Skip to main content

A Kernel Method Used for the Analysis of Replicated Micro-array Experiments

  • Chapter
Statistical Methods for Biostatistics and Related Fields
  • 2798 Accesses

Abstract

Microarrays are part of a new class of biotechnologies which allow the monitoring of expression levels of thousands of genes simultaneously. In microarray data analysis, the comparison of gene expression profiles with respect to different conditions and the selection of biologically interesting genes are crucial tasks. Multivariate statistical methods have been applied to analyze these large data sets. To identify genes with altered expression under two experimental conditions, we describe in this chapter a new nonparametric statistical approach. Specifically, we propose estimating the distributions of a t-type statistic and its null statistic, using kernel methods. A comparison of these two distributions by means of a likelihood ratio test can identify genes with significantly changed expressions. A method for the calculation of the cut-off point and the acceptance region is also derived. This methodology is applied to a leukemia data set containing expression levels of 7129 genes. The corresponding results are compared to the traditional t-test and the normal mixture model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Baldi, P. and Long, A. D. (2001). A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics, 17, 509–519.

    Article  Google Scholar 

  • Bosq, D. and Lecoutre, J. P. (1987). Théorie de l’estimation fonctionnelle. Economica: Paris.

    Google Scholar 

  • Brown, P. O. and Botstein, D. (1999). Exploring the New World of the genome with DNA microarrays. Nature Genetics, 21, 33–37.

    Article  Google Scholar 

  • Chen, Y., Dougherty, E. R. and Bittner, M. (1999). Ratio-based decisions and the quantitative analysis of cDNA microarray images. Biomedical Optics, 2, 364–374.

    Article  Google Scholar 

  • Cline, D. B. H. and Hart, J. D. (1991). Kernel estimation of densities with discontinuities or discontinuous derivatives. Statistics, 22, 69–84.

    MATH  MathSciNet  Google Scholar 

  • Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood estimation from incomplete data, via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B, 39, 1–38.

    MATH  MathSciNet  Google Scholar 

  • Deheuvels, P. (1977). Estimation non paramétrique de la densité par histogrammes généralisés. Revue de Statistique Appliquée, 25, 35–42.

    MathSciNet  Google Scholar 

  • Dudoit, S., Yang, Y. H., Speed, T. P. and Callow, M. J. (2002). Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Statistica Sinica, 12, 111–139.

    MATH  MathSciNet  Google Scholar 

  • Efron, B., Tibshirani, R., Goss, V. and Chu, G. (2000). Microarrays and their use in a comparative experiment. Technical report: Stanford University.

    Google Scholar 

  • Efron, B., Storey, J. and Tibshirani, R. (2001). Microarrays, empirical Bayes methods, and false discovery rates. Technical report:Univ. California, Berkeley.

    Google Scholar 

  • Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., and Lander, E. S. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286, 531–537.

    Article  Google Scholar 

  • Hall, P. and Wehrly, T.E. (1991). A geometrical method for removing edge effects from kernel-type nonparametric regression estimators. J. Amer. Stat. Assoc., 86, 665–672.

    Article  MathSciNet  Google Scholar 

  • Hall, P. and Yao, Q. (1991). Nonparametric estimation and symetry tests for conditional density function. Journal of Nonparametric Statistics, 14, 259–278.

    Google Scholar 

  • Kerr, M. K., Martin, M. and Churchill, G.A. (2000). Analysis of variance for gene expression microarray data. Journal of Computational Biology, 7, 819–837.

    Article  Google Scholar 

  • Lander, E. S. (1999). Array of hope. Nature Genetics, 21, 3–4.

    Article  Google Scholar 

  • Lee, M. L. T., Kuo, F. C., Whitmore, G. A. and Sklar, J. (2000). Importance of microarray gene expression studies: Statistical methods and evidence from repetitive cDNA hybridizations. Proceedings of the National Academy of Sciences of the United States of America, 97, 9834–9839.

    Article  MATH  Google Scholar 

  • Li, C. and Wong, W.H. (2001). Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection. Proceedings of the National Academy of Sciences of the United States of America, 98, 31–36.

    Article  MATH  Google Scholar 

  • McLachlan, G. and Peel, D. (1999). The EMMIX Algorithm for the Fitting of Normal and t-Components. Journal of Statistical Software, 4 (http://www.jstatsoft.org/).

    Google Scholar 

  • Newton, M. A., Kendziorski, C. M., Richmond, C. S., Blattner, F.R. and Tsui, K. W. (2001). On differential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data. Journal of Computational Biology, 8, 37–52.

    Article  Google Scholar 

  • Newton, M. A., Noueiry, A., Sarkar, D. and Ahlquist, P. (2004). Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics, 5, 155–176.

    Article  MATH  Google Scholar 

  • Pan, W. (2002). A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments. Bioinformatics, 12, 546–554.

    Article  Google Scholar 

  • Pan, W., Lin, J. and Le, C. T. (2004). A mixture model approach to detecting differentially expressed genes with microarray data. Functional and Integrative Genomics, (To appear).

    Google Scholar 

  • Press, W. H., Teukolsky, C. M., Vetterling, W. T. and Flannery, B. P. (1992). Numerical recipes in C, The Art of Scientific Computing. 2nd ed. Cambridge: New York.

    MATH  Google Scholar 

  • Quackenbush, J. (2001). Computational analysis of microarray data. Nature Reviews-Genetics, 2, 418–427.

    Article  Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.

    MATH  MathSciNet  Google Scholar 

  • Schuster, E. F. (1985). Incorporating support constraints into nonparametric estimation of densities. Communications in Statistics, Theory and Methods, 14, 1123–1136.

    MATH  MathSciNet  Google Scholar 

  • Silverman, B. W. (1986). Density estimation for statistics and data analysis. Monographs on Statistics and Applied Probability. Chapman & Hall, London.

    Google Scholar 

  • Thomas, J. G., Olson, J. M., Tapscott, S. J. and Zhao, L. P. (2001 ). An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. Genome Research, 11, 1227–1236.

    Article  Google Scholar 

  • Tusher, V.G., Tibshirani, R. and Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences of the United States of America, 98, 5116–5121.

    Article  MATH  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gannoun, A., Liquetît, B., Saracco, J., Urfer, W. (2007). A Kernel Method Used for the Analysis of Replicated Micro-array Experiments. In: Statistical Methods for Biostatistics and Related Fields. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-32691-5_3

Download citation

Publish with us

Policies and ethics