Skip to main content

First Principles Theory of Nano-Materials, Spintronic Materials, and Nano-Spintronic Materials

  • Conference paper
Computer Simulation Studies in Condensed-Matter Physics XVIII

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 105))

Abstract

Two of the most exciting recent developments in semiconductor science and technology are the advent of semiconductor nanocrystals and of dilute magnetic semiconductors. Here, the significance of first principles theory for elucidating the properties of these material classes is explained and numerous examples are given. The examples include studies of the quantum size effect in semiconductor nanocrystals, studies of the spin-polarized electronic structure in bulk dilute magnetic semiconductors, and studies of size-dependent electronic and magnetic properties in dilute magnetic semiconducting nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.L. Efros, M. Rosen: Annu. Rev. Mater. Sci. 30, 475 (2000)

    Article  ADS  Google Scholar 

  2. B. Murray, D.J. Norris, M.G. Bawendi: J. Am. Chem. Soc. 115, 8706 (1993)

    Article  Google Scholar 

  3. H. Ohno: Science 281, 51 (1998)

    Article  Google Scholar 

  4. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger: Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  5. T. Graf, S.T.B. Goennenwein, M.S. Brandt: Phys. Stat. Sol. (b) 239, 277 (2003)

    Article  ADS  Google Scholar 

  6. J.R. Chelikowsky, M.L. Cohen, in Handbook on Semiconductors. 2nd edn., ed. by T.S. Moss (Elsevier, Amsterdam 1992); W.E. Pickett: Comput. Phys. Rep. 9, 115 (1989)

    Google Scholar 

  7. R.M. Dreizler, E.K.U. Gross: Density Functional Theory. (Springer, Berlin Heidelberg New York 1990)

    MATH  Google Scholar 

  8. N. Troullier, J.L. Martins: Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  9. S. Öğüt, J.R. Chelikowsky: Phys. Rev. Lett. 83, 3852 (1999)

    Article  ADS  Google Scholar 

  10. J.R. Chelikowsky, L. Kronik, I. Vasiliev, M. Jain, Y. Saad, in Handbook of Numerical Analysis. C. Le Bris (Ed.) Vol. 10: Computational Chemistry (Elsevier, Amsterdam 2003) pp. 613–637

    Google Scholar 

  11. M.E. Casida, in Recent Advances in Density-Functional Methods. Ed. by D.P. Chong (World Scientific, Singapure 1995) Pt. I, pp. 155–192

    Chapter  Google Scholar 

  12. J.R. Chelikowsky, L. Kronik, I. Vasiliev: J. Phys. Condens. Matter 15, 1517 (2003)

    Article  ADS  Google Scholar 

  13. Takagahara, K. Takeda: Phys. Rev. B 53, R4205 (1996)

    Article  ADS  Google Scholar 

  14. A. Hill, S. Pokrant, A.J. Hill: J. Phys. Chem. B 103, 3156 (1999)

    Article  Google Scholar 

  15. F.A. Reboredo, A. Zunger: Phys. Rev. B 62, R2275 (2000)

    Article  ADS  Google Scholar 

  16. H.-C. Weissker, J. Furthmüller, F. Bechstedt: Phys. Rev. B 69, 115310 (2004)

    Article  ADS  Google Scholar 

  17. G. Nesher, L. Kronik, J.R. Chelikowsky: Phys. Rev. B 71, 035344 (2005)

    Article  ADS  Google Scholar 

  18. U. Itoh, Y. Toyoshima, H. Onuki, N. Washida, T. Ibuki: J. Chem. Phys. 85,4867 (1986)

    Article  ADS  Google Scholar 

  19. B. Beschoten, P.A. Crowell, I. Malajovich, D.D. Awschalom, F. Matsukura, A. Shen, H. Ohno: Phys. Rev. Lett. 83, 3073 (1999); Y. Ohno, D.K. Young, B. Beschoten, F. Matsukura, H. Ohno, D.D. Awschalom, Nature 402, 790 (1999)

    Article  ADS  Google Scholar 

  20. S.J. Pearton, C.R. Abernathy, D.P. Norton, A.F. Hebard, Y.D. Park, L.A. Boatner, J.D. Budai: Mater. Sci. Eng. R 40, 127 (2003)

    Article  Google Scholar 

  21. M. Jain, L. Kronik, J.R. Chelikowsky, V.V. Godlevsky: Phys. Rev. B 64, 245205 (2001)

    Article  ADS  Google Scholar 

  22. L. Kronik, M. Jain, J.R. Chelikowsky: Phys. Rev. B 66, 041203 (2002)

    Article  ADS  Google Scholar 

  23. M. Linnarsson, E. Janzen, B. Monemar, M. Kleverman, A. Thilderkvist: Phys. Rev. B 55, 6938 (1997)

    Article  ADS  Google Scholar 

  24. R.Y. Korotkov et al.: Appl. Phys. Lett. 80, 1731 (2002)

    Article  ADS  Google Scholar 

  25. E. Kojima, R. Shimano, Y. Hashimoto, S. Katsumoto, Y. Iye, M. Kuwata-Gonokami: Phys. Rev. B 68, 193203 (2002)

    Article  ADS  Google Scholar 

  26. F.E. Arkun, M.J. Reed, E.A. Berkman, N.A. El-Masry, J.M. Zavada, M.L. Reed, S.M. Bedair: Appl. Phys. Lett. 85, 3809 (2004)

    Article  ADS  Google Scholar 

  27. D. Loss, D.P. DiVincenzo: Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  28. M. Ouyang, D.D. Awschalom: Science 301, 1074 (2003)

    Article  ADS  Google Scholar 

  29. S. Sapra, D.D. Sarma, S. Sanvito, N.A. Hill: Nano Lett. 2, 605 (2002)

    Article  ADS  Google Scholar 

  30. S. Cho, S. Choi, S.C. Korea, Y. Kim, J.B. Ketterson, B. Kim, Y.C. Kim, J. Jung: Phys. Rev. B. 66, 033303 (2002)

    Article  ADS  Google Scholar 

  31. B. Oczkiewicz, A. Twardowski, M. Demianiuk: Solid State Commun. 64, 107 (1987)

    Article  ADS  Google Scholar 

  32. D.J. Norris, N. Yao, F.T. Charnock, T.A. Kennedy: Nano Letters 1, 3 (2001)

    Article  ADS  Google Scholar 

  33. X. Huang, J.R. Chelikowsky: Phys. Rev. B, in press

    Google Scholar 

  34. X. Huang, A. Makmal, J.R. Chelikowsky, L. Kronik: to be published

    Google Scholar 

  35. A. Stroppa, S. Picozzi, A. Continenza, A.J. Freeman: Phys. Rev. B 68, 155203 (2003)

    Article  ADS  Google Scholar 

  36. L.M. Sandratskii: Phys. Rev. B 68, 224432 (2003)

    Article  ADS  Google Scholar 

  37. These magnetic moments agree with a similar investigation of the three bulk alloys — T. Schulthess, W. Butler: J. Appl. Phys. 89, 7021 (2001)

    Article  ADS  Google Scholar 

  38. Y.D. Park, A.T. Hanbicki, S.C. Erwin, C.S. Hellberg, J.M. Sullivan, J.E. Mattson, T.F. Ambrose, A. Wilson, G. Spanos, B.T. Jonker: Science 295, 651 (2002)

    Article  ADS  Google Scholar 

  39. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand: Science 287, 1019 (2000)

    Article  ADS  Google Scholar 

  40. Y.-J. Zhao, T. Shishidou, A.J. Freeman: Phys. Rev. Lett. 90, 047204 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kronik, L. (2007). First Principles Theory of Nano-Materials, Spintronic Materials, and Nano-Spintronic Materials. In: Landau, D.P., Lewis, S.P., Schüttler, HB. (eds) Computer Simulation Studies in Condensed-Matter Physics XVIII. Springer Proceedings in Physics, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32640-3_7

Download citation

Publish with us

Policies and ethics