Skip to main content

Color-Critical Graphs and Hypergraphs with Few Edges: A Survey

  • Chapter
More Sets, Graphs and Numbers

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 15))

  • 1406 Accesses

Abstract

The current situation with bounds on the smallest number of edges in color-critical graphs and hypergraphs is discussed.

This work was partially supported by the NSF grant DMS-0099608.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. L. Abbott and D. R. Hare, Sparse color-critical hypergraphs, Combinatorica, 9 (1989), 233–243.

    Article  MATH  MathSciNet  Google Scholar 

  2. H. L. Abbott, D. R. Hare and B. Zhou, Sparse color-critical graphs and hypergraphs with no short cycles, J. Graph Theory, 18 (1994), 373–388.

    Article  MATH  MathSciNet  Google Scholar 

  3. H. L. Abbott, D. R. Hare and B. Zhou, Color-critical graphs and hypergraphs with few edges and no short cycles, Discrete Math., 182 (1998), 3–11.

    Article  MATH  MathSciNet  Google Scholar 

  4. N. Alon, Hypergraphs with high chromatic number, Graphs and Gombinatorics, 1 (1985), 387–389.

    Article  MATH  Google Scholar 

  5. N. Alon, Choice number of graphs: a probabilistic approach, Combinatorics, Probability and Computing, 1 (1992), 107–114.

    MATH  MathSciNet  Google Scholar 

  6. N. Alon, Restricted colorings of graphs, in: K. Walker, ed., “Surveys in Combinatorics, 1993”, London Math. Soc. Lecture Note Series, 187 (Cambridge Univ. Press, Cambridge, UK, 1993), 1–33.

    Chapter  Google Scholar 

  7. D. Archdeacon, J. Hutchinson, A. Nakamoto, S. Negami and K. Ota, Chromatic numbers of quadrangulations on closed surfaces, J. Graph Theory 37 (2001), 100–114.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Beck, On 3-chromatic hypergraphs, Discrete Math., 24 (1978), 127–137.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. I. Burstein, Critical hypergraphs with minimal number of edges (Russian), Bull. Acad. Sci. Georgian SSR, 83 (1976), 285–288.

    MATH  MathSciNet  Google Scholar 

  10. W. A. Deuber, A. V. Kostochka and H. Sachs, A shorter proof of Dirac’s theorem on the number of edges in chromatically critical graphs, Diskretnyi Analiz i Issledovanie Operacii, 3 (1996), No. 4, 28–34 (in Russian).

    MATH  MathSciNet  Google Scholar 

  11. G. A. Dirac, Note on the colouring of graphs, Math. Z., 54 (1951), 347–353.

    Article  MATH  MathSciNet  Google Scholar 

  12. G. A. Dirac, The structure of k-chromatic graphs, Fund. Math., 40 (1953), 42–55.

    MATH  MathSciNet  Google Scholar 

  13. G. A. Dirac, A theorem of R. L. Brooks and a conjecture of H. Hadwiger, Proc. London Math. Soc., (3) 7 (1957), 161–195.

    Article  MATH  MathSciNet  Google Scholar 

  14. G. A. Dirac, The number of edges in critical graphs, J. Reine u. Angew. Math., 268/269 (1974), 150–164.

    MathSciNet  Google Scholar 

  15. P. Erdős, On a combinatorial problem, I, Nordisk Mat. Tidskrift, 11 (1963), 5–10.

    Google Scholar 

  16. P. Erdős, On a combinatorial problem, II, Acta Mathematica of the Academy of Sciences, Hungary, 15 (1964), 445–447.

    Article  Google Scholar 

  17. P. Erdős and A. Hajnal, On a property of families of sets, Acta Mathematica of the Academy of Sciences, Hungary, 12 (1961), 87–123.

    Article  Google Scholar 

  18. P. Erdős and L. Lovász, Problems and Results on 3-chromatic hypergraphs and some related questions, in: Infinite and Finite Sets, A. Hajnal et. al., editors, Colloq. Math. Soc. J. Bolyai, 11, North Holland, Amsterdam, 609–627, 1975.

    Google Scholar 

  19. P. Erdős, A. L. Rubin and H. Taylor, Choosability in graphs, in: Proc. West Coast Conference on Combinatorics, Graph Theory and Computing, Arcata, 1979, Congr. Numer., 26 (1980), 125–157.

    Google Scholar 

  20. T. Gallai, Kritische Graphen I, Publ. Math. Inst. Hungar. Acad. Sci., 8 (1963), 165–192.

    MATH  MathSciNet  Google Scholar 

  21. T. Gallai, Kritische Graphen II, Publ. Math. Inst. Hungar. Acad. Sci., 8 (1963), 373–395.

    MATH  MathSciNet  Google Scholar 

  22. D. Grable, K. Phelps and V Rödl, The minimum independence number for designs, Combinatorica, 15 (1995), 175–185.

    Article  MATH  MathSciNet  Google Scholar 

  23. T. R. Jensen and B. Toft, Graph coloring problems, Wiley-Interscience, 1995.

    Google Scholar 

  24. A. V. Kostochka, Constructing strictly k-degenerate k-chromatic graphs of arbitrary girth, Abstracts of the V All-Union Conference on the Problems of Theoretical Cybernetics, Novosibirsk, 1980, 130–131 (in Russian).

    Google Scholar 

  25. A. V. Kostochka, Coloring uniform hypergraphs with few colors, submitted.

    Google Scholar 

  26. A. V. Kostochka, On a theorem by Erdős, Rubin and Taylor, submitted.

    Google Scholar 

  27. A. V. Kostochka, D. Mubayi, V. Rödl and P. Tetali, On the chromatic number of set-systems, Random Structures and Algorithms, 19 (2001), 87–98.

    Article  MATH  MathSciNet  Google Scholar 

  28. A. V. Kostochka and J. Nesšetfil, Properties of Descartes’ construction of triangle-free graphs with high chromatic number, Combinatorics, Probability and Computing, 8 (1999), 467–472.

    Article  MATH  MathSciNet  Google Scholar 

  29. A. V. Kostochka and M. Stiebitz, Excess in colour-critical graphs, Bolyai Society Mathematical Studies, 7 (1999), 87–99.

    MathSciNet  Google Scholar 

  30. A. V. Kostochka and M. Stiebitz, On the number of edges in colour-critical graphs and hypergraphs, Combinatorica, 20 (2000), 521–530.

    Article  MATH  MathSciNet  Google Scholar 

  31. A. V. Kostochka and M. Stiebitz, A list version of Dirac’s theorem on the number of edges in colour-critical graphs, Journal of Graph Theory, 39 (2002), 165–167.

    Article  MATH  MathSciNet  Google Scholar 

  32. A. V. Kostochka and M. Stiebitz, A new lower bound on the number of edges in colour-critical graphs, to appear in J. Combinatorial Theory B.

    Google Scholar 

  33. A. V. Kostochka and D. R. Woodall, Density conditions for panchromatic colourings of hypergraphs, Combinatorica, 21 (2001), 515–541.

    Article  MATH  MathSciNet  Google Scholar 

  34. A. V. Kostochka and D. R. Woodall, On the number of edges in hypergraphs critical with respect to strong colourings, European Journal of Combinatorics, 21 (2000), 249–255.

    Article  MATH  MathSciNet  Google Scholar 

  35. M. Krivelevich, An improved bound on the minimal number of edges in color-critical graphs, Electron J. Combin., 5 (1998), no. 1, Research Paper 4, 4 pp.

    Google Scholar 

  36. M. Krivelevich, On the minimal number of edges in color-critical graphs, Combinatorica, 17 (1997), 401–426.

    Article  MATH  MathSciNet  Google Scholar 

  37. H. V. Kronk and J. Mitchem, On Dirac’s generalization of Brooks’ theorem, Canad. J. Math., 24 (1972), 805–807.

    MATH  MathSciNet  Google Scholar 

  38. L. Lovász, A generalization of Konig’s theorem, Acta Math. Acad. Sci. Hungar., 21 (1970), 443–446.

    Article  MATH  MathSciNet  Google Scholar 

  39. L. Lovász, Coverings and colorings of hypergraphs, in: Congressus Numer., 8 (1973), 3–12.

    Google Scholar 

  40. J. Mitchem, A new proof of a theorem of Dirac on the number of edges in critical graphs, J. Reine u. Angew. Math., 299/300 (1978), 84–91.

    MathSciNet  Google Scholar 

  41. D. Mubayi and P. Tetali, Generalizing Property B to many colors, manuscript.

    Google Scholar 

  42. O. Ore, The Four Colour Problem, Academic Press, New York, 1967.

    Google Scholar 

  43. K. Phelps, V Rödl, Steiner Triple Systems with Minimum Independence Number, Ars combinatoria, 21 (1986), 167–172.

    MATH  MathSciNet  Google Scholar 

  44. J. Radhakrishnan and A. Srinivasan, Improved bounds and algorithms for hypergraph two-coloring, Random Structures and Algorithms, 16 (2000), 4–32.

    Article  MATH  MathSciNet  Google Scholar 

  45. V. Rödl, E. Šinajová, Note on Independent Sets in Steiner Systems, Random Structures and Algorithms, 5 (1994), 183–190.

    Article  MATH  MathSciNet  Google Scholar 

  46. H. Sachs and M. Stiebitz, On constructive methods in the theory of colour-critical graphs, Discrete Math., 74 (1989), 201–226.

    Article  MATH  MathSciNet  Google Scholar 

  47. P. D. Seymour, On the two-coloring of hypergraphs, Quart. J. Math. Oxford, 25 (1974), 303–312.

    Article  MATH  MathSciNet  Google Scholar 

  48. J. Spencer, Coloring n-sets red and blue, J. Comb. Theory Ser. A, 30 (1981), 112–113.

    Article  MATH  Google Scholar 

  49. M. Stiebitz, Proof of a conjecture of T. Gallai concerning connectivity properties of colour-critical graphs, Combinatorica, 2 (1982), 315–323.

    Article  MATH  MathSciNet  Google Scholar 

  50. Szabó, An application of Lovász’ Local Lemma—a new lower bound for the van der Waerden number, Random Structures and Algorithms, 1 (1990), 344–360.

    Article  Google Scholar 

  51. B. Toft, Colour-critical graphs and hypergraphs, J. Combin. Th. Ser. B, 16 (1974), 145–161.

    Article  MATH  MathSciNet  Google Scholar 

  52. B. Toft, Colouring, stable sets and perfect graphs, Graham, R. L. (ed.) et al., Handbook of combinatorics. Vol. 1–2. Amsterdam: Elsevier (North-Holland), 1995, 233–288.

    Google Scholar 

  53. D. R. Woodall, Property B and the four-color problem. Combinatorics. Institute of Mathematics and its Applications, Southend-on-sea, England (1972), 322–340.

    Google Scholar 

  54. V. G. Vizing, Colouring the vertices of a graph with prescribed colours, Metody Diskretnogo Analiza v Teorii Kodov i Skhem, No. 29 (1976), 3–10 (in Russian).

    MATH  MathSciNet  Google Scholar 

  55. V. H. Vu, A general upper bound on the list chromatic number of locally sparse graphs, Combinatorics, Probability and Computing, 11 (2002), 103–111.

    Article  MATH  MathSciNet  Google Scholar 

  56. J. Weinstein, Excess in critical graphs, J. Combin. Th.(B), 18 (1975), 24–31.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 János Bolyai Mathematical Society and Springer Verlag

About this chapter

Cite this chapter

Kostochka, A. (2006). Color-Critical Graphs and Hypergraphs with Few Edges: A Survey. In: Győri, E., Katona, G.O.H., Lovász, L., Fleiner, T. (eds) More Sets, Graphs and Numbers. Bolyai Society Mathematical Studies, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32439-3_9

Download citation

Publish with us

Policies and ethics