Abstract
The current situation with bounds on the smallest number of edges in color-critical graphs and hypergraphs is discussed.
This work was partially supported by the NSF grant DMS-0099608.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
H. L. Abbott and D. R. Hare, Sparse color-critical hypergraphs, Combinatorica, 9 (1989), 233–243.
H. L. Abbott, D. R. Hare and B. Zhou, Sparse color-critical graphs and hypergraphs with no short cycles, J. Graph Theory, 18 (1994), 373–388.
H. L. Abbott, D. R. Hare and B. Zhou, Color-critical graphs and hypergraphs with few edges and no short cycles, Discrete Math., 182 (1998), 3–11.
N. Alon, Hypergraphs with high chromatic number, Graphs and Gombinatorics, 1 (1985), 387–389.
N. Alon, Choice number of graphs: a probabilistic approach, Combinatorics, Probability and Computing, 1 (1992), 107–114.
N. Alon, Restricted colorings of graphs, in: K. Walker, ed., “Surveys in Combinatorics, 1993”, London Math. Soc. Lecture Note Series, 187 (Cambridge Univ. Press, Cambridge, UK, 1993), 1–33.
D. Archdeacon, J. Hutchinson, A. Nakamoto, S. Negami and K. Ota, Chromatic numbers of quadrangulations on closed surfaces, J. Graph Theory 37 (2001), 100–114.
J. Beck, On 3-chromatic hypergraphs, Discrete Math., 24 (1978), 127–137.
M. I. Burstein, Critical hypergraphs with minimal number of edges (Russian), Bull. Acad. Sci. Georgian SSR, 83 (1976), 285–288.
W. A. Deuber, A. V. Kostochka and H. Sachs, A shorter proof of Dirac’s theorem on the number of edges in chromatically critical graphs, Diskretnyi Analiz i Issledovanie Operacii, 3 (1996), No. 4, 28–34 (in Russian).
G. A. Dirac, Note on the colouring of graphs, Math. Z., 54 (1951), 347–353.
G. A. Dirac, The structure of k-chromatic graphs, Fund. Math., 40 (1953), 42–55.
G. A. Dirac, A theorem of R. L. Brooks and a conjecture of H. Hadwiger, Proc. London Math. Soc., (3) 7 (1957), 161–195.
G. A. Dirac, The number of edges in critical graphs, J. Reine u. Angew. Math., 268/269 (1974), 150–164.
P. Erdős, On a combinatorial problem, I, Nordisk Mat. Tidskrift, 11 (1963), 5–10.
P. Erdős, On a combinatorial problem, II, Acta Mathematica of the Academy of Sciences, Hungary, 15 (1964), 445–447.
P. Erdős and A. Hajnal, On a property of families of sets, Acta Mathematica of the Academy of Sciences, Hungary, 12 (1961), 87–123.
P. Erdős and L. Lovász, Problems and Results on 3-chromatic hypergraphs and some related questions, in: Infinite and Finite Sets, A. Hajnal et. al., editors, Colloq. Math. Soc. J. Bolyai, 11, North Holland, Amsterdam, 609–627, 1975.
P. Erdős, A. L. Rubin and H. Taylor, Choosability in graphs, in: Proc. West Coast Conference on Combinatorics, Graph Theory and Computing, Arcata, 1979, Congr. Numer., 26 (1980), 125–157.
T. Gallai, Kritische Graphen I, Publ. Math. Inst. Hungar. Acad. Sci., 8 (1963), 165–192.
T. Gallai, Kritische Graphen II, Publ. Math. Inst. Hungar. Acad. Sci., 8 (1963), 373–395.
D. Grable, K. Phelps and V Rödl, The minimum independence number for designs, Combinatorica, 15 (1995), 175–185.
T. R. Jensen and B. Toft, Graph coloring problems, Wiley-Interscience, 1995.
A. V. Kostochka, Constructing strictly k-degenerate k-chromatic graphs of arbitrary girth, Abstracts of the V All-Union Conference on the Problems of Theoretical Cybernetics, Novosibirsk, 1980, 130–131 (in Russian).
A. V. Kostochka, Coloring uniform hypergraphs with few colors, submitted.
A. V. Kostochka, On a theorem by Erdős, Rubin and Taylor, submitted.
A. V. Kostochka, D. Mubayi, V. Rödl and P. Tetali, On the chromatic number of set-systems, Random Structures and Algorithms, 19 (2001), 87–98.
A. V. Kostochka and J. Nesšetfil, Properties of Descartes’ construction of triangle-free graphs with high chromatic number, Combinatorics, Probability and Computing, 8 (1999), 467–472.
A. V. Kostochka and M. Stiebitz, Excess in colour-critical graphs, Bolyai Society Mathematical Studies, 7 (1999), 87–99.
A. V. Kostochka and M. Stiebitz, On the number of edges in colour-critical graphs and hypergraphs, Combinatorica, 20 (2000), 521–530.
A. V. Kostochka and M. Stiebitz, A list version of Dirac’s theorem on the number of edges in colour-critical graphs, Journal of Graph Theory, 39 (2002), 165–167.
A. V. Kostochka and M. Stiebitz, A new lower bound on the number of edges in colour-critical graphs, to appear in J. Combinatorial Theory B.
A. V. Kostochka and D. R. Woodall, Density conditions for panchromatic colourings of hypergraphs, Combinatorica, 21 (2001), 515–541.
A. V. Kostochka and D. R. Woodall, On the number of edges in hypergraphs critical with respect to strong colourings, European Journal of Combinatorics, 21 (2000), 249–255.
M. Krivelevich, An improved bound on the minimal number of edges in color-critical graphs, Electron J. Combin., 5 (1998), no. 1, Research Paper 4, 4 pp.
M. Krivelevich, On the minimal number of edges in color-critical graphs, Combinatorica, 17 (1997), 401–426.
H. V. Kronk and J. Mitchem, On Dirac’s generalization of Brooks’ theorem, Canad. J. Math., 24 (1972), 805–807.
L. Lovász, A generalization of Konig’s theorem, Acta Math. Acad. Sci. Hungar., 21 (1970), 443–446.
L. Lovász, Coverings and colorings of hypergraphs, in: Congressus Numer., 8 (1973), 3–12.
J. Mitchem, A new proof of a theorem of Dirac on the number of edges in critical graphs, J. Reine u. Angew. Math., 299/300 (1978), 84–91.
D. Mubayi and P. Tetali, Generalizing Property B to many colors, manuscript.
O. Ore, The Four Colour Problem, Academic Press, New York, 1967.
K. Phelps, V Rödl, Steiner Triple Systems with Minimum Independence Number, Ars combinatoria, 21 (1986), 167–172.
J. Radhakrishnan and A. Srinivasan, Improved bounds and algorithms for hypergraph two-coloring, Random Structures and Algorithms, 16 (2000), 4–32.
V. Rödl, E. Šinajová, Note on Independent Sets in Steiner Systems, Random Structures and Algorithms, 5 (1994), 183–190.
H. Sachs and M. Stiebitz, On constructive methods in the theory of colour-critical graphs, Discrete Math., 74 (1989), 201–226.
P. D. Seymour, On the two-coloring of hypergraphs, Quart. J. Math. Oxford, 25 (1974), 303–312.
J. Spencer, Coloring n-sets red and blue, J. Comb. Theory Ser. A, 30 (1981), 112–113.
M. Stiebitz, Proof of a conjecture of T. Gallai concerning connectivity properties of colour-critical graphs, Combinatorica, 2 (1982), 315–323.
Szabó, An application of Lovász’ Local Lemma—a new lower bound for the van der Waerden number, Random Structures and Algorithms, 1 (1990), 344–360.
B. Toft, Colour-critical graphs and hypergraphs, J. Combin. Th. Ser. B, 16 (1974), 145–161.
B. Toft, Colouring, stable sets and perfect graphs, Graham, R. L. (ed.) et al., Handbook of combinatorics. Vol. 1–2. Amsterdam: Elsevier (North-Holland), 1995, 233–288.
D. R. Woodall, Property B and the four-color problem. Combinatorics. Institute of Mathematics and its Applications, Southend-on-sea, England (1972), 322–340.
V. G. Vizing, Colouring the vertices of a graph with prescribed colours, Metody Diskretnogo Analiza v Teorii Kodov i Skhem, No. 29 (1976), 3–10 (in Russian).
V. H. Vu, A general upper bound on the list chromatic number of locally sparse graphs, Combinatorics, Probability and Computing, 11 (2002), 103–111.
J. Weinstein, Excess in critical graphs, J. Combin. Th.(B), 18 (1975), 24–31.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 János Bolyai Mathematical Society and Springer Verlag
About this chapter
Cite this chapter
Kostochka, A. (2006). Color-Critical Graphs and Hypergraphs with Few Edges: A Survey. In: Győri, E., Katona, G.O.H., Lovász, L., Fleiner, T. (eds) More Sets, Graphs and Numbers. Bolyai Society Mathematical Studies, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32439-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-32439-3_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-32377-8
Online ISBN: 978-3-540-32439-3
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)