P. K. Agarwal, B. Aronov, J. Pach, R. Pollack and M. Sharir, Quasi-planar graphs have a linear number of edges, Combinatorica, 17 (1997), 1–9.
MATH
CrossRef
MathSciNet
Google Scholar
M. Ajtai, V. Chvátal, M. Newborn and E. Szemerédi, Crossing-free subgraphs, in: Theory and Practice of Combinatorics, North-Holland Math. Stud., 60, North-Holland, Amsterdam-New York, 1982, 9–12.
Google Scholar
N. Alon and P. Erdős, Disjoint edges in geometric graphs, Discrete Comput. Geom., 4 (1989), 287–290.
MATH
CrossRef
MathSciNet
Google Scholar
Bollobás and A. Thomason, Proof of a conjecture of Mader, Erdős and Hajnal on topological complete subgraphs, European J. Combin., 19 (1998), 883–887.
MATH
CrossRef
MathSciNet
Google Scholar
P. Braß, G. Károlyi and P. Valtr, A Turán-type extremal theory for convex geometric graphs, in: Discrete and Computational Geometry — The Goodman-Pollack Festschrift (B. Aronov et al., eds.), Springer Verlag, Berlin, 2003, to appear.
Google Scholar
G. Cairns and Y. Nikolayevsky, Bounds for generalized thrackles, Discrete Comput. Geom., 23 (2000), 191–206.
MATH
CrossRef
MathSciNet
Google Scholar
V. Capoyleas and J. Pach, A Turán-type theorem on chords of a convex polygon, Journal of Combinatorial Theory, Series B, 56 (1992), 9–15.
MATH
CrossRef
MathSciNet
Google Scholar
W. Goddard, M. Katchalski and D. J. Kleitman, Forcing disjoint segments in the plane, European J. Combin., 17 (1996), 391–395.
MATH
CrossRef
MathSciNet
Google Scholar
H. Hopf and E. Pannwitz, Aufgabe Nr. 167, Jahresbericht der deutschen Mathematiker-Vereinigung, 43 (1934), 114.
Google Scholar
J. Komlós and E. Szemerédi, Topological cliques in graphs II, Combin. Probab. Comput., 5 (1996), 79–90.
MATH
CrossRef
MathSciNet
Google Scholar
A. V. Kostochka, Lower bound of the Hadwiger number of graphs by their average degree, Combinatorica, 4 (1984), 307–316.
MATH
CrossRef
MathSciNet
Google Scholar
A. V. Kostochka, Upper bounds on the chromatic number of graphs (in Russian), Trudy Inst. Mat. (Novosibirsk), Modeli i Metody Optim., 10 (1988), 204–226.
MathSciNet
Google Scholar
A. V. Kostochka and J. Kratochvíl, Covering and coloring polygon-circle graphs, Discrete Math., 163 (1997), 299–305.
MATH
CrossRef
MathSciNet
Google Scholar
F. T. Leighton, New lower bound techniques for VLSI, Math. Systems Theory, 17 (1984), 47–70.
MATH
CrossRef
MathSciNet
Google Scholar
L. Lovász, J. Pach and M. Szegedy, On Conway’s thrackle conjecture, Discrete and Computational Geometry, 18 (1997), 369–376.
MATH
CrossRef
MathSciNet
Google Scholar
W. Mader, 3n — 5 edges do force a subdivision of K
5, Combinatorica, 18 (1998), 569–595.
MATH
CrossRef
MathSciNet
Google Scholar
P. Kolman and J. Matoušek, Crossing number, pair-crossing number, and expansion, J. Comb. Theory, Ser. B, 92 (2004), 99–113.
MATH
CrossRef
Google Scholar
S. McGuinness, Colouring arcwise connected sets in the plane I, Graphs & Combin., 16 (2000), 429–439.
MATH
CrossRef
MathSciNet
Google Scholar
J. Pach, Geometric graph theory, in: Surveys in Combinatorics, 1999 (J. D. Lamb and D. A. Preece, eds.), London Mathematical Society Lecture Notes, 267, Cambridge University Press, Cambridge, 1999, 167–200.
Google Scholar
J. Pach, R. Pinchasi, M. Sharir and G. Tóth, Topological graphs with no large grids, Special Issue dedicated to Victor Neumann-Lara, Graphs and Combinatorics (accepted).
Google Scholar
J. Pach, R. Pinchasi, G. Tardos and G. Tóth, Geometric graphs with no self-intersecting path of length three, in: Graph Drawing (M. T. Goodrich, S. G. Kobourov, eds.), Lecture Notes in Computer Science 2528, Springer-Verlag (Berlin, 2002), 295–311. Also in: European Journal of Combinatorics, 25 (2004), 793–811.
Google Scholar
J. Pach, R. Radoičić and G. Tóth, A generalization of quasi-planarity, in: Towards a Theory of Geometric Graphs (J. Pach, ed.), Contemporary Mathematics 342, AMS (2004), 177–183.
Google Scholar
J. Pach, R. Radoičić, G. Tardos and G. Tóth, Improving the Crossing Lemma by finding more crossings in sparse graphs, Proceedings of the 20th Annual Symposium on Computational Geometry (2004), 68–75. Also in: Discrete and Computational Geometry, accepted.
Google Scholar
J. Pach, F. Shahrokhi and M. Szegedy, Applications of the crossing number, Algorithmica, 16 (1996), 111–117.
MATH
CrossRef
MathSciNet
Google Scholar
J. Pach and G. Tóth, Graphs drawn with few crossings per edge, Combinatorica, 17 (1997), 427–439.
MATH
CrossRef
MathSciNet
Google Scholar
J. Pach and J. Törőcsik, Some geometric applications of Dilworth’s theorem, Discrete Comput. Geom., 12 (1994), 1–7.
MATH
CrossRef
MathSciNet
Google Scholar
R. Pinchasi and R. Radoičić, Topological graphs with no self-intersecting cycle of length 4, Proceedings of the 19th Annual Symposium on Computational Geometry (2003), 98–103. Also in: Towards a Theory of Geometric Graphs (J. Pach, ed.), Contemporary Mathematics 342, AMS (2004), 233–243.
Google Scholar
N. Robertson, P. Seymour and R. Thomas, Hadwiger’s conjecture for K
6-free graphs, Combinatorica, 13 (1993), 279–361.
MATH
CrossRef
MathSciNet
Google Scholar
O. Sýkora and I. Vrt’o, On VLSI layouts of the star graph and related networks, Integration, The VLSI Journal, 17 (1994), 83–93.
MATH
CrossRef
Google Scholar
G. Tardos, Construction of locally plane graphs, manuscript.
Google Scholar
A. Thomason, An extremal function for contractions of graphs, Math. Proc. Cambridge Philos. Soc., 95 (1984), 261–265.
MATH
CrossRef
MathSciNet
Google Scholar
G. Tóth, Note on geometric graphs, J. Combin. Theory, Ser. A, 89 (2000), 126–132.
MATH
CrossRef
MathSciNet
Google Scholar
A. Thomason, The extremal function for complete minors, J. Combin. Theory Ser. B, 81 (2001), 318–338.
MATH
CrossRef
MathSciNet
Google Scholar
P. Valtr, On geometric graphs with no k pairwise parallel edges, Discrete and Computational Geometry, 19 (1998), 461–469.
MATH
CrossRef
MathSciNet
Google Scholar
D. R. Woodall, Thrackles and deadlock, in: Combinatorial Mathematics and its Applications (Proc. Conf., Oxford, 1969), Academic Press, London, 1971, 335–347.
Google Scholar