Skip to main content

Learning Multi-agent Search Strategies

  • Conference paper
Adaptive Agents and Multi-Agent Systems II (AAMAS 2004, AAMAS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3394))

Abstract

We identify a specialised class of reinforcement learning problem in which the agent(s) have the goal of gathering information (identifying the hidden state). The gathered information can affect rewards but not optimal behaviour. Exploiting this characteristic, an algorithm is developed for evaluating an agent’s policy against all possible hidden state histories at the same time. Experimental results show the method is effective in a two-dimensional multi-pursuer evader searching task. A comparison is made between identical policies, joint policies and “relational” policies that exploit relativistic information about the pursuers’ positions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sutton, R.S., Barto, A.G.: Reinforcement Learning. MIT Press, Cambridge (1998)

    Google Scholar 

  2. Thrun, S.: Monte carlo POMDPs. In: Solla, S., Leen, T., Müller, K. (eds.) Advances in Neural Information Processing Systems, vol. 12, pp. 1064–1070. MIT Press, Cambridge (2000)

    Google Scholar 

  3. Doucet, A., de Freitas, J.F.G. (eds.): N.J.G.: Sequential Monte Carlo Methods in Practice. Springer, New York (2001)

    Google Scholar 

  4. Roy, N., Gordon, G.: Exponential family PCA for belief compression in POMDPs. In: Advances in Neural Information Processing Systems (2002)

    Google Scholar 

  5. Strens, M.J.A., Moore, A.W.: Direct policy search using paired statistical tests. In: Proceedings of the 18th International Conference on Machine Learning, pp. 545–552. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  6. Storn, R., Price, K.: Differential evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, International Computer Science Institute, Berkeley, CA (1995)

    Google Scholar 

  7. Strens, M.J.A., Moore, A.W.: Policy search using paired comparisons. Journal of Machine Learning Research 3, 921–950 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Strens, M.J.A. (2005). Learning Multi-agent Search Strategies. In: Kudenko, D., Kazakov, D., Alonso, E. (eds) Adaptive Agents and Multi-Agent Systems II. AAMAS AAMAS 2004 2003. Lecture Notes in Computer Science(), vol 3394. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32274-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32274-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25260-3

  • Online ISBN: 978-3-540-32274-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics