Abstract
We give a contextual characterization of pseudocomplementation by means of the arrow relations.
AMS Subject Classification: 06D15
Keywords
- lattices
- pseudocomplement
- closure operator
- Formal Concept Analysis
- arrow-relation
- complete homomorphism
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Balbes, R., Dwinger, P.: Distributive lattices. University of Missouri Press (1974)
Chajda, I., Glazek, K.: A basic course on general algebra. Technical University Press, Zielona Góra (2000)
Chameni Nembua, C., Monjardet, B.: Finite pseudocomplemented lattices and “permutoedre”. Discrete Math. 111(1-3), 105–112 (1993)
Ganter, B., Wille, R.: Formal Concept Analysis – Mathematical Foundations. Springer, Heidelberg (1999)
Grätzer, G.: Lattice Theory. First concepts and distributive lattices. W.H. Freeman and Company, New York (1971)
Katrinak, T.: P-algebras. Contributions to lattice theory, Szeged/Hung (1980), Colloq. Math. Soc. Janos Bolyai 33, 549–573 (1983)
Kwuida, L.: Dicomplemented lattices. A contextual generalization of Boolean algebras. Dissertation, TU Dresden (2004)
Lee, K.B.: Equational classes of distributive pseudo-complemented lattices. Can. J. Math. 22, 881–891 (1970)
Schmid, J.: Lee classes and sentences for pseudo-complemented semilattices. Algebra Univers. 25(2), 223–232 (1988)
Sofronie-Stokkermans, V.: Representation theorems and automated theorem proving in certain classes of non-classical logics. In: Proceedings of the ECAI 1998, workshop on many-valued Logic for AI applications (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ganter, B., Kwuida, L. (2005). Which Concept Lattices Are Pseudocomplemented?. In: Ganter, B., Godin, R. (eds) Formal Concept Analysis. ICFCA 2005. Lecture Notes in Computer Science(), vol 3403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32262-7_29
Download citation
DOI: https://doi.org/10.1007/978-3-540-32262-7_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24525-4
Online ISBN: 978-3-540-32262-7
eBook Packages: Computer ScienceComputer Science (R0)
