Skip to main content

Planarity of Lattices

An Approach Based on Attribute Additivity

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 3403)

Abstract

Popular lattice drawing algorithms do not take planarity into account and find plane diagrams mainly heuristically. We present a characterization of planar lattices based on a theorem of Dushnik and Miller [4] and the “left”-relation introduced by Kelly and Rival [6]. In particular, our work is helpful for drawing plane attribute additive diagrams.

Keywords

  • Linear Order
  • Planar Lattice
  • Concept Lattice
  • Maximal Chain
  • Lattice Element

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, K.A., Fishburn, P., Roberts, F.S.: Partial Orders of Dimension 2. Networks 2, 11–28 (1971)

    CrossRef  MathSciNet  Google Scholar 

  2. Birkhoff, G.: Lattice Theory, 3rd edn. Amer. Math. Soc., Providence (1967)

    MATH  Google Scholar 

  3. DiBattista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice-Hall, Englewood Cliffs (1999)

    Google Scholar 

  4. Dushnik, B., Miller, E.W.: Partially Ordered Sets. Amer. J. Math. 63, 600–610 (1941)

    CrossRef  MathSciNet  Google Scholar 

  5. Eades, P.: A Heuristic for Graph Drawing. Congressus Numerantium 42, 149–160 (1984)

    MathSciNet  Google Scholar 

  6. Kelly, D., Rival, I.: Planar Lattices. Can. J. Math. 27(3), 636–665 (1975)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  8. Skorsky, M.: Endliche Verbände - Diagramme und Eigenschaften. PhD thesis, TH Darmstadt (1992)

    Google Scholar 

  9. Zschalig, C.: Ein Force Directed Placement Algorithmus zum Zeichnen von Liniendiagrammen von Verbänden. Diploma Thesis, TU Dresden (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zschalig, C. (2005). Planarity of Lattices. In: Ganter, B., Godin, R. (eds) Formal Concept Analysis. ICFCA 2005. Lecture Notes in Computer Science(), vol 3403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32262-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32262-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24525-4

  • Online ISBN: 978-3-540-32262-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics