Advertisement

Complete Subalgebras of Semiconcept Algebras and Protoconcept Algebras

  • Björn Vormbrock
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3403)

Abstract

In order to define a negation on formal concepts in Formal Concept Analysis, the more general notions of semiconcepts and protoconcepts were introduced. The theory of the resulting protoconcept and semiconcept algebras is developed in Boolean Concept Logic as a part of Contextual Logic. In this paper it is shown that each complete subalgebra of a semiconcept algebra is itself the semiconcept algebra of an appropriate context. An analogous result holds for the complete subalgebras of protoconcept algebras. These contexts can be obtained from the original context through partitions of the object and the attribute set satisfying certain conditions. Characterizations of the complete subalgebras of semiconcept and protoconcept algebras in terms of contexts, in terms of subsets, and through closed subrelations are given.

Keywords

Formal Concept Concept Lattice Formal Context Formal Concept Analysis Basic Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Da03]
    Dau, F.: The Logic System of Concept Graphs with Negation. LNCS (LNAI), vol. 2892. Springer, Heidelberg (2003)zbMATHCrossRefGoogle Scholar
  2. [DK03]
    Dau, F., Klinger, J.: From Formal Concept Analysis to Contextual Logic (2003), http://www.dr-dau.net/Papers/ICFCA2003.pdf
  3. [GW99]
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  4. [GZ90]
    Ganter, B., Zickwolff, M.: Nach welchen Kriterien wählen Firmen Hochschulabsolventen aus? - Auswertung einer Befragung. FB4-Preprint 1343, TH-Darmstadt (1990)Google Scholar
  5. [GP81]
    Gumm, H.-P., Poguntke, W.: Boolesche Algebra. B.I.-Wissenschaftsverlag, Mannheim-Wien-Zürich (1981)Google Scholar
  6. [KV03]
    Klinger, J., Vormbrock, B.: Contextual Boolean Logic: How did it develop? In: Ganter, B., de Moor, A. (eds.) Using Conceptual Structures. Contributions to ICCS 2003, pp. 143–156. Shaker, Aachen (2003)Google Scholar
  7. [Vo03]
    Vormbrock, B.: Congruence Relations on Double Boolean Algebras. FB4-Preprint 2287, TU Darmstadt (2003)Google Scholar
  8. [Vo04]
    Vormbrock, B.: A First Step Towards Protoconcept Exploration. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 208–221. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. [VW03]
    Vormbrock, B., Wille, R.: Semiconcept and Protoconcept Algebras: The Basic Theorems. FB4-Preprint 2309, TU Darmstadt (2003)Google Scholar
  10. [Wi00a]
    Wille, R.: Boolean Concept Logic. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 317–331. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. [Wi00b]
    Wille, R.: Contextual Logic Summary. In: Stumme, G. (ed.) Working with Conceptual Structures. Contributions to ICCS 2000, pp. 265–276. Shaker, Aachen (2000)Google Scholar
  12. [Wi01]
    Wille, R.: Boolean Judgment Logic. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 115–128. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Björn Vormbrock
    • 1
  1. 1.Fachbereich MathematikTechnische Universität DarmstadtDarmstadtD

Personalised recommendations