Skip to main content

A Finite State Model for On-Line Analytical Processing in Triadic Contexts

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 3403)

Abstract

About ten years ago, triadic contexts were presented by Lehmann and Wille as an extension of Formal Concept Analysis. However, they have rarely been used up to now, which may be due to the rather complex structure of the resulting diagrams. In this paper, we go one step back and discuss how traditional line diagrams of standard (dyadic) concept lattices can be used for exploring and navigating triadic data.

Our approach is inspired by the slice & dice paradigm of On-Line-Analytical Processing (OLAP).We recall the basic ideas of OLAP, and showhowthey may be transferred to triadic contexts. For modeling the navigation patterns a user might follow, we use the formalisms of finite state machines. In order to present the benefits of our model, we show how it can be used for navigating the IT Baseline Protection Manual of the German Federal Office for Information Security.

Keywords

  • State Machine
  • Conceptual Structure
  • Concept Lattice
  • Formal Concept Analysis
  • Input Alphabet

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biedermann, K.: How triadic diagrams represent conceptual structures. In: Delugach, H.S., Keeler, M.A., Searle, L., Lukose, D., Sowa, J.F. (eds.) ICCS 1997. LNCS (LNAI), vol. 1257, pp. 304–317. Springer, Heidelberg (1997)

    CrossRef  Google Scholar 

  2. Biedermann, K.: Triadic Galois connections. In: Denecke, K., Lüders, O. (eds.) General algebra and applications in discrete mathematics, pp. 23–33. Shaker Verlag, Aachen (1997)

    Google Scholar 

  3. Biedermann, K.: Completion of triordered sets and trilattices. In: Dorninger, D., Eigenthaler, G., Kaiser, H.K., Kautschitsch, H., More, W., Müller, W.B. (eds.) Contributions to General Algebra, Klagenfurt, vol. 10, pp. 61–78. Johannes Heyn Verlag (1998)

    Google Scholar 

  4. Biedermann, K.: A foundation of the theory of trilattices. Dissertation, TU Darmstadt, Aachen (1998)

    Google Scholar 

  5. Biedermann, K.: Powerset trilattices. In: Mugnier, M.-L., Chein, M. (eds.) ICCS 1998. LNCS (LNAI), vol. 1453, p. 209. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  6. Biedermann, K.: An equational theory for trilattices. Algebra Universalis 42, 253–268 (1999)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Codd, E.F., Codd, S.B., Salley, C.T.: Providing OLAP (On-Line Analytical Processing) to User-Analysis: An IT Mandate, White paper (1993)

    Google Scholar 

  8. Dau, F., Wille, R.: On the modal unterstanding of triadic contexts. In: Decker, R., Gaul, W. (eds.), Classification and Information Processing at the Turn of the Millenium, Proc. Gesellschaft für Klassifikation (2001)

    Google Scholar 

  9. German Federal Office for Information Security. IT Baseline Protection Manual (October 2003), http://www.bsi.de/gshb/

  10. Ganter, B., Obiedkov, S.A.: Implications in triadic contexts. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 186–195. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  11. Groh, B., Wille, R.: Lattices of triadic concept graphs. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 332–341. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  12. Hereth, J.: Relational scaling and databases. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp. 62–76. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  13. Hereth, J., Stumme, G.: Reverse pivoting in conceptual information systems. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 202–215. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  14. Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Ellis, G., Rich, W., Levinson, R., Sowa, J.F. (eds.) ICCS 1995. LNCS, vol. 954, pp. 32–43. Springer, Heidelberg (1995)

    Google Scholar 

  15. Prediger, S.: Nested concept graphs and triadic power context families. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 249–262. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  16. Priss, U.: A triadic model of information flow. In: Mineau, G.W. (ed.) Conceptual Structures: Extracting and Representing Semantics, Quebec, Canada, pp. 159–170. Dept. of Computer Science, University Laval (2001)

    Google Scholar 

  17. Schoolmann, L., Wille, R.: Concept graphs with subdivision: A semantic approach. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS, vol. 2746, pp. 271–281. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  18. Söll, H.: Begriffliche Analyse triadischer Daten: Das IT-Grundschutzhandbuch des Bundesamts für Sicherheit in der Informationstechnik. Diploma thesis, FB Mathematik, TU Darmstadt, Darmstadt (April 1998)

    Google Scholar 

  19. Stumme, G.: On-line analytical processing with conceptual information systems. In: Tanaka, K., Ghandeharizadeh, S. (eds.) Proc. 5th Intl. Conf. on Foundations of Data Organization (FODO 1998), November 12-13, pp. 117–126 (1998)

    Google Scholar 

  20. Wille, R.: The basic theorem of triadic concept analysis. Order 12, 149–158 (1995)

    CrossRef  MATH  MathSciNet  Google Scholar 

  21. Wille, R.: Triadic Concept Graphs. In: Mugnier, M.-L., Chein, M. (eds.) ICCS 1998. LNCS (LNAI), vol. 1453, pp. 194–208. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  22. Wille, R., Zickwolff, M.: Grundlagen einer triadischen Begriffsanalyse. In: Stumme, G., Wille, R. (eds.) Begriffliche Wissensverarbeitung. Methoden und Anwendungen, pp. 125–150. Springer, Heidelberg (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stumme, G. (2005). A Finite State Model for On-Line Analytical Processing in Triadic Contexts. In: Ganter, B., Godin, R. (eds) Formal Concept Analysis. ICFCA 2005. Lecture Notes in Computer Science(), vol 3403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32262-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32262-7_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24525-4

  • Online ISBN: 978-3-540-32262-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics