Skip to main content

Alpha Galois Lattices: An Overview

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 3403)

Abstract

What we propose here is to reduce the size of Galois lattices still conserving their formal structure and exhaustivity. For that purpose we use a preliminary partition of the instance set, representing the association of a “type” to each instance. By redefining the notion of extent of a term in order to cope, to a certain degree (denoted as α), with this partition, we define a particular family of Galois lattices denoted as Alpha Galois lattices. We also discuss the related implication rules defined as inclusion of such α-extents and show that Iceberg concept lattices are Alpha Galois lattices where the partition is reduced to one single class.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbu, M., Montjardet, M.: Ordre et Classification. Algèbre et Combinatoire 2. Hachette Université (1970)

    Google Scholar 

  2. Birkhoff, G.: Lattice Theory. American Mathematical Society Colloquium Publications, Rhode Island (1973)

    Google Scholar 

  3. Ganascia, J.-G.: TDIS: an algebraic formalization. In: Int. Joint Conf. on Art. Int., vol. 2, pp. 1008–1013 (1993)

    Google Scholar 

  4. Ganter, B., Wille, R.: Formal Concept Analysis: Logical Foundations. Springer, Heidelberg (1999)

    Google Scholar 

  5. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  6. Guigues, J.L., Duquenne, V.: Famille non redondante d’implications informatives résultant d’un tableau de données binaires. Mathématiques et Sciences humaines 95, 5–18 (1986)

    MathSciNet  Google Scholar 

  7. Hereth, J., Stumme, G., Wille, R., Wille, U.: Conceptual knowledge discovery and data analysis. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 421–437. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  8. Kuznetsov, S., Obiedkov, S.: Comparing performance of algorithms for generating concept lattices. J. of Experimental and Theoretical Art. Int. 2/3(14), 189–216 (2002)

    CrossRef  Google Scholar 

  9. Liquiere, M., Sallantin, J.: Structural machine learning with Galois lattice and graphs. In: ICML 1998. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  10. Luxenburger, M.: Implications partielles dans un contexte. Mathématiques, Informatique et Sciences Humaines 29(113), 35–55 (1991)

    MathSciNet  Google Scholar 

  11. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association rules using closed itemset lattices. Information Systems 24(1), 25–46 (1999)

    CrossRef  Google Scholar 

  12. Pernelle, N., Rousset, M.-C., Soldano, H., Ventos, V.: Zoom: a nested Galois lattices-based system for conceptual clustering. J. of Experimental and Theoretical Artificial Intelligence 2/3(14), 157–187 (2002)

    CrossRef  Google Scholar 

  13. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Intelligent structuring and reducing of association rules with formal concept analysis. In: Baader, F., Brewka, G., Eiter, T. (eds.) KI 2001. LNCS (LNAI), vol. 2174, pp. 335–349. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  14. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg concept lattices with titanic. Data and Knowledge Engineering 42(2), 189–222 (2002)

    CrossRef  MATH  Google Scholar 

  15. Valtchev, P., Missaoui, R., Lebrun, P.: A partition-based approach towards building Galois (concept) lattices. Discrete Mathematics 256(3), 801–829 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  16. Ventos, V., Soldano, H.: Les treillis de Galois alpha ou De l?influence d?une partition a priori des donneés. Revue d’Intelligence Artificielle (2005) (to appear)

    Google Scholar 

  17. Waiyamai, K., Lakhal, L.: Knowledge discovery from very large databases using frequent concept lattices. In: Lopez de Mantaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 437–445. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  18. Zaki, M.J.: Generating non-redundant association rules. Intl. Conf. on Knowledge Discovery and DataMining, KDD 2000 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ventos, V., Soldano, H. (2005). Alpha Galois Lattices: An Overview. In: Ganter, B., Godin, R. (eds) Formal Concept Analysis. ICFCA 2005. Lecture Notes in Computer Science(), vol 3403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32262-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32262-7_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24525-4

  • Online ISBN: 978-3-540-32262-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics