Advertisement

Alpha Galois Lattices: An Overview

  • Véronique Ventos
  • Henry Soldano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3403)

Abstract

What we propose here is to reduce the size of Galois lattices still conserving their formal structure and exhaustivity. For that purpose we use a preliminary partition of the instance set, representing the association of a “type” to each instance. By redefining the notion of extent of a term in order to cope, to a certain degree (denoted as α), with this partition, we define a particular family of Galois lattices denoted as Alpha Galois lattices. We also discuss the related implication rules defined as inclusion of such α-extents and show that Iceberg concept lattices are Alpha Galois lattices where the partition is reduced to one single class.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barbu, M., Montjardet, M.: Ordre et Classification. Algèbre et Combinatoire 2. Hachette Université (1970)Google Scholar
  2. 2.
    Birkhoff, G.: Lattice Theory. American Mathematical Society Colloquium Publications, Rhode Island (1973)Google Scholar
  3. 3.
    Ganascia, J.-G.: TDIS: an algebraic formalization. In: Int. Joint Conf. on Art. Int., vol. 2, pp. 1008–1013 (1993)Google Scholar
  4. 4.
    Ganter, B., Wille, R.: Formal Concept Analysis: Logical Foundations. Springer, Heidelberg (1999)Google Scholar
  5. 5.
    Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Guigues, J.L., Duquenne, V.: Famille non redondante d’implications informatives résultant d’un tableau de données binaires. Mathématiques et Sciences humaines 95, 5–18 (1986)MathSciNetGoogle Scholar
  7. 7.
    Hereth, J., Stumme, G., Wille, R., Wille, U.: Conceptual knowledge discovery and data analysis. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 421–437. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Kuznetsov, S., Obiedkov, S.: Comparing performance of algorithms for generating concept lattices. J. of Experimental and Theoretical Art. Int. 2/3(14), 189–216 (2002)CrossRefGoogle Scholar
  9. 9.
    Liquiere, M., Sallantin, J.: Structural machine learning with Galois lattice and graphs. In: ICML 1998. Morgan Kaufmann, San Francisco (1998)Google Scholar
  10. 10.
    Luxenburger, M.: Implications partielles dans un contexte. Mathématiques, Informatique et Sciences Humaines 29(113), 35–55 (1991)MathSciNetGoogle Scholar
  11. 11.
    Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association rules using closed itemset lattices. Information Systems 24(1), 25–46 (1999)CrossRefGoogle Scholar
  12. 12.
    Pernelle, N., Rousset, M.-C., Soldano, H., Ventos, V.: Zoom: a nested Galois lattices-based system for conceptual clustering. J. of Experimental and Theoretical Artificial Intelligence 2/3(14), 157–187 (2002)CrossRefGoogle Scholar
  13. 13.
    Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Intelligent structuring and reducing of association rules with formal concept analysis. In: Baader, F., Brewka, G., Eiter, T. (eds.) KI 2001. LNCS (LNAI), vol. 2174, pp. 335–349. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg concept lattices with titanic. Data and Knowledge Engineering 42(2), 189–222 (2002)zbMATHCrossRefGoogle Scholar
  15. 15.
    Valtchev, P., Missaoui, R., Lebrun, P.: A partition-based approach towards building Galois (concept) lattices. Discrete Mathematics 256(3), 801–829 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ventos, V., Soldano, H.: Les treillis de Galois alpha ou De l?influence d?une partition a priori des donneés. Revue d’Intelligence Artificielle (2005) (to appear)Google Scholar
  17. 17.
    Waiyamai, K., Lakhal, L.: Knowledge discovery from very large databases using frequent concept lattices. In: Lopez de Mantaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 437–445. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Zaki, M.J.: Generating non-redundant association rules. Intl. Conf. on Knowledge Discovery and DataMining, KDD 2000 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Véronique Ventos
    • 1
  • Henry Soldano
    • 2
  1. 1.LRI, UMR-CNRS 8623Université Paris-SudOrsayFrance
  2. 2.L.I.P.N, UMR-CNRS 7030Université Paris-NordVilletaneuseFrance

Personalised recommendations