Skip to main content

Triadic Concept Graphs and Their Conceptual Contents

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 3403)

Abstract

Concept graphs

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biedermann, K.: A foundation of the theory of trilattices. In: Dissertation, TU Darmstadt 1998. Shaker Verlag, Aachen (1998)

    Google Scholar 

  2. Ganter, B., Wille, R.: Formal Concept Analysis: mathematical foundations. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  3. Groh, B., Wille, R.: Lattices of triadic concept graphs. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 332–341. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  4. Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Ellis, G., Levinson, R., Rich, W., Sowa, J.F. (eds.) ICCS 1995. LNCS (LNAI), vol. 954, pp. 32–43. Springer, Heidelberg (1995)

    Google Scholar 

  5. Schoolmann, L., Wille, R.: Concept graphs with subdivision: a semantic approach. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS (LNAI), vol. 2746, pp. 271–281. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  6. Wille, R.: The basic theorem of Triadic Concept Analysis. In: Order, vol. 12, pp. 149–158 (1995)

    Google Scholar 

  7. Wille, R.: Triadic concept graphs. In: Mugnier, M.-L., Chein, M. (eds.) ICCS 1998. LNCS (LNAI), vol. 1453, pp. 194–208. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  8. Wille, R.: Contextual Logic summary. In: Stume, G. (ed.) Working with Conceptual Structures. Contributions to ICCS 2000, pp. 265–276. Shaker, Aachen (2000)

    Google Scholar 

  9. Wille, R.: Existential concept graphs of power context families. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp. 382–395. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  10. Wille, R.: Conceptual contents as information - basics for Contextual Judgment Logic. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS (LNAI), vol. 2746, pp. 1–15. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  11. Wille, R.: Implicational concept graphs. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 52–61. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schoolmann, L. (2005). Triadic Concept Graphs and Their Conceptual Contents. In: Ganter, B., Godin, R. (eds) Formal Concept Analysis. ICFCA 2005. Lecture Notes in Computer Science(), vol 3403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32262-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32262-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24525-4

  • Online ISBN: 978-3-540-32262-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics