Skip to main content

Crisply Generated Fuzzy Concepts

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 3403)

Abstract

In formal concept analysis of data with fuzzy attributes, both the extent and the intent of a formal (fuzzy) concept may be fuzzy sets. In this paper we focus on so-called crisply generated formal concepts. A concept \(\langle{A,B}\rangle \in \mathcal{B}(X, Y, I)\) is crisply generated if A = D (and so B = D ↓↑) for some crisp (i.e., ordinary) set DY of attributes (generator). Considering only crisply generated concepts has two practical consequences. First, the number of crisply generated formal concepts is considerably less than the number of all formal fuzzy concepts. Second, since crisply generated concepts may be identified with a (ordinary, not fuzzy) set of attributes (the largest generator), they might be considered “the important ones” among all formal fuzzy concepts. We present basic properties of the set of all crisply generated concepts, an algorithm for listing all crisply generated concepts, a version of the main theorem of concept lattices for crisply generated concepts, and show that crisply generated concepts are just the fixed points of pairs of mappings resembling Galois connections. Furthermore, we show connections to other papers on formal concept analysis of data with fuzzy attributes. Also, we present examples demonstrating the reduction of the number of formal concepts and the speed-up of our algorithm (compared to listing of all formal concepts and testing whether a concept is crisply generated).

Keywords

  • Fuzzy Logic
  • Formal Concept
  • Concept Lattice
  • Formal Concept Analysis
  • Fuzzy Concept

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bělohlávek, R.: Fuzzy concepts and conceptual structures: induced similarities. In: Proc. Joint Conf. Inf. Sci. 1998, Durham, NC, vol. I, pp. 179–182 (1998)

    Google Scholar 

  2. Bělohlávek, R.: Fuzzy Galois connections. Math. Log. Quart. 45(4), 497–504 (1999)

    CrossRef  MATH  Google Scholar 

  3. Bělohlávek, R.: Similarity relations in concept lattices. J. Logic Comput. 10(6), 823–845 (2000)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Bělohlávek, R.: Reduction and a simple proof of characterization of fuzzy concept lattices. Fundamenta Informaticae 46(4), 277–285 (2001)

    MATH  MathSciNet  Google Scholar 

  5. Bělohlávek, R.: Fuzzy closure operators. J. Math. Anal. Appl. 262, 473–489 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Bělohlávek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer, Academic/Plenum Publishers, New York (2002)

    MATH  Google Scholar 

  7. Bělohlávek, R.: Concept lattices and order in fuzzy logic. Ann. Pure Appl. Logic 128, 277–298 (2004)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Bělohlávek, R.: Proc. Fourth Int. Conf. on Recent Advances in Soft Computing. Nottingham, United Kingdom, December 12–13, pp. 200–205 (2002)

    Google Scholar 

  9. Bělohlávek, R.: What is a fuzzy concept lattice (in preparation)

    Google Scholar 

  10. Bělohlávek, R., Funioková, T., Vychodil, V.: Galois connections with hedges. Preliminary version to appear in Proc. 8th Fuzzy Days, Dortmund (September 2004) (submitted)

    Google Scholar 

  11. Burusco, A., Fuentes-Gonzáles, R.: The study of the L-fuzzy concept lattice. Mathware & Soft Computing 3, 209–218 (1994)

    Google Scholar 

  12. Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer, Berlin (1999)

    MATH  Google Scholar 

  13. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

  14. Höhle, U.: On the fundamentals of fuzzy set theory. J. Math. Anal. Appl. 201, 786–826 (1996)

    CrossRef  MATH  MathSciNet  Google Scholar 

  15. Johnson, D.S., Yannakakis, M., Papadimitrou, C.H.: On generating all maximal independent sets. Inf. Processing Letters 15, 129–133 (1988)

    Google Scholar 

  16. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice Hall, Upper Saddle River (1995)

    MATH  Google Scholar 

  17. Krajči, S.: Cluster based efficient generation of fuzzy concepts. Neural Network World 5, 521–530 (2003)

    Google Scholar 

  18. Pollandt, S.: Fuzzy Begriffe. Springer, Berlin (1997)

    MATH  Google Scholar 

  19. Ore, O.: Galois connections. Trans. Amer. Math. Soc. 55, 493–513 (1944)

    MATH  MathSciNet  Google Scholar 

  20. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht (1982)

    Google Scholar 

  21. Wolff, K.E.: Concepts in fuzzy scaling theory: order and granularity. Fuzzy Sets and Systems 132, 63–75 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  22. Yahia, S., Jaoua, A.: Discovering knowledge from fuzzy concept lattice. In: Kandel, A., Last, M., Bunke, H. (eds.) Data Mining and Computational Intelligence, pp. 167–190. Physica-Verlag, Heidelberg (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bělohlávek, R., Sklenář, V., Zacpal, J. (2005). Crisply Generated Fuzzy Concepts. In: Ganter, B., Godin, R. (eds) Formal Concept Analysis. ICFCA 2005. Lecture Notes in Computer Science(), vol 3403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32262-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32262-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24525-4

  • Online ISBN: 978-3-540-32262-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics