Skip to main content

Efficiently Computing a Linear Extension of the Sub-hierarchy of a Concept Lattice

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 3403)

Abstract

Galois sub-hierarchies have been introduced as an interesting polynomial-size sub-order of a concept lattice, with useful applications. We present an algorithm which, given a context, efficiently computes an ordered partition which corresponds to a linear extension of this sub-hierarchy.

Keywords

  • Linear Extension
  • Concept Lattice
  • Formal Concept Analysis
  • Class Hierarchy
  • Property Domination

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbut, M., Monjardet, B.: Ordre et classification. Classiques Hachette (1970)

    Google Scholar 

  2. Berry, A., Sigayret, A.: Representing a concept lattice by a graph. In: Proc. Discrete Maths and Data Mining Workshop, 2nd SIAM Conference on Data Mining (SDM 2002), Arlington, VA, USA (April 2002); Discrete Applied Mathematics, special issue on Discrete Maths and Data Mining 144(1-2), 27–42 (2004)

    Google Scholar 

  3. Berry, A., Sigayret, A.: Maintaining class membership information. In: Bruel, J.-M., Bellahsène, Z. (eds.) OOIS 2002. LNCS, vol. 2426, pp. 13–23. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  4. Berry, A., Bordat, J.-P., Sigayret, A.: Concepts can’t afford to stammer. In: INRIA Proc. International Conference Journées de l’Informatique Messine (JIM 2003), Metz (France), Submitted as ‘A local approach to concept generation’ (September 2003)

    Google Scholar 

  5. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, Providence (1967)

    MATH  Google Scholar 

  6. Dao, M., Huchard, M., Leblanc, H., Libourel, T., Roume, C.: A New Approach of Factorization: Introducing Metrics. In: Proc. 8th IEEE international Software Metrics Symposium (METRICS 2002), Ottawa (Canada), June 2002, pp. 227–236 (2002)

    Google Scholar 

  7. Dao, M., Huchard, M., Rouane Hacene, M., Roume, C., Valtchev, P.: Improving Generalization Level in UML. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 346–360. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  8. Dicky, H., Dony, C., Huchard, M., Libourel, T.: ARES, Adding a class and RESstructuring Inheritance Hierarchies. In: Proc. 1me Journées Bases de Données Avancées, Nancy (France), pp. 25–42 (1995)

    Google Scholar 

  9. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  10. Godin, R., Chau, T.T.: Comparaison d’algorithmes de construction de hiérarchies de classes. L’Objet 5(3), 321–338 (2000)

    Google Scholar 

  11. Godin, R., Mili, H.: Building and Maintaining Analysis-Level Class Hierarchies Using Galois Lattices. In: Proc. OOPSLA 1993, Washington, DC, USA (1993); Special issue of Sigplan Notice, 28(10), 394–410 (1993)

    Google Scholar 

  12. Godin, R., Mili, H., Mineau, G., Missaoui, R., Arfi, A., Chau, T.T.: Design of Class Hierarchies Based on Concept (Galois) Lattices. Theory and Practice of Object Systems 2(4), 117–134 (1998)

    CrossRef  Google Scholar 

  13. Hitzler, P.: Default Reasoning over Domains and Concept Hierarchies. In: Biundo, S., Frühwirth, T., Palm, G. (eds.) KI 2004. LNCS (LNAI), vol. 3238, pp. 351–365. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  14. Huchard, M., Dicky, H., Leblanc, H.: Galois lattice as a framework to specify building class hierarchies algorithms. In: Theoretical Informatics and Applications, EDP Science ed., January 2000, vol. 34, pp. 521–548 (2000)

    Google Scholar 

  15. Huchard, M., Leblanc, H.: From Java classes to Java interfaces through Galois lattices. In: Proc. 3rd International Conference on Orders, Algorithms and Applications (Ordal 1999), Montpellier (France), pp. 211–216 (1999)

    Google Scholar 

  16. Osswald, R., Pedersen, W.: Induction of Classifications from Linguistic Data. In: Proc. ECAI-Workshop on Advances in Formal Concept Analysis for Knowledge Discovery in Databases (FCAKDD 2002), Lyon (France) (July 2002)

    Google Scholar 

  17. Pedersen, W.: A Set-Theoretical Approach for the Induction of Inheritance Hierarchies. Electronic Notes in Theoretical Computer Science, 51 (July 2001)

    Google Scholar 

  18. Spinrad, J.P.: Doubly Lexical Orderings of Dense 0-1 Matrices. Information Processing Letters 45, 229–235 (1993)

    CrossRef  MATH  MathSciNet  Google Scholar 

  19. UML 2.0 superstructure Specification. OMG Final Adopted Specification ptc/03-08-02. URL, http://www.omg.org/

  20. Yahia, A., Lakhal, L., Cicchetti, R., Bordat, J.-P.: iO2, An Algorithmic Method for Building Inheritance Graphs in Object Database Design. In: Thalheim, B. (ed.) ER 1996. LNCS, vol. 1157, pp. 422–437. Springer, Heidelberg (1996)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berry, A., Huchard, M., McConnell, R.M., Sigayret, A., Spinrad, J.P. (2005). Efficiently Computing a Linear Extension of the Sub-hierarchy of a Concept Lattice. In: Ganter, B., Godin, R. (eds) Formal Concept Analysis. ICFCA 2005. Lecture Notes in Computer Science(), vol 3403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32262-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32262-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24525-4

  • Online ISBN: 978-3-540-32262-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics