Abstract
Galois sub-hierarchies have been introduced as an interesting polynomial-size sub-order of a concept lattice, with useful applications. We present an algorithm which, given a context, efficiently computes an ordered partition which corresponds to a linear extension of this sub-hierarchy.
Keywords
- Linear Extension
- Concept Lattice
- Formal Concept Analysis
- Class Hierarchy
- Property Domination
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Barbut, M., Monjardet, B.: Ordre et classification. Classiques Hachette (1970)
Berry, A., Sigayret, A.: Representing a concept lattice by a graph. In: Proc. Discrete Maths and Data Mining Workshop, 2nd SIAM Conference on Data Mining (SDM 2002), Arlington, VA, USA (April 2002); Discrete Applied Mathematics, special issue on Discrete Maths and Data Mining 144(1-2), 27–42 (2004)
Berry, A., Sigayret, A.: Maintaining class membership information. In: Bruel, J.-M., Bellahsène, Z. (eds.) OOIS 2002. LNCS, vol. 2426, pp. 13–23. Springer, Heidelberg (2002)
Berry, A., Bordat, J.-P., Sigayret, A.: Concepts can’t afford to stammer. In: INRIA Proc. International Conference Journées de l’Informatique Messine (JIM 2003), Metz (France), Submitted as ‘A local approach to concept generation’ (September 2003)
Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, Providence (1967)
Dao, M., Huchard, M., Leblanc, H., Libourel, T., Roume, C.: A New Approach of Factorization: Introducing Metrics. In: Proc. 8th IEEE international Software Metrics Symposium (METRICS 2002), Ottawa (Canada), June 2002, pp. 227–236 (2002)
Dao, M., Huchard, M., Rouane Hacene, M., Roume, C., Valtchev, P.: Improving Generalization Level in UML. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 346–360. Springer, Heidelberg (2004)
Dicky, H., Dony, C., Huchard, M., Libourel, T.: ARES, Adding a class and RESstructuring Inheritance Hierarchies. In: Proc. 1me Journées Bases de Données Avancées, Nancy (France), pp. 25–42 (1995)
Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999)
Godin, R., Chau, T.T.: Comparaison d’algorithmes de construction de hiérarchies de classes. L’Objet 5(3), 321–338 (2000)
Godin, R., Mili, H.: Building and Maintaining Analysis-Level Class Hierarchies Using Galois Lattices. In: Proc. OOPSLA 1993, Washington, DC, USA (1993); Special issue of Sigplan Notice, 28(10), 394–410 (1993)
Godin, R., Mili, H., Mineau, G., Missaoui, R., Arfi, A., Chau, T.T.: Design of Class Hierarchies Based on Concept (Galois) Lattices. Theory and Practice of Object Systems 2(4), 117–134 (1998)
Hitzler, P.: Default Reasoning over Domains and Concept Hierarchies. In: Biundo, S., Frühwirth, T., Palm, G. (eds.) KI 2004. LNCS (LNAI), vol. 3238, pp. 351–365. Springer, Heidelberg (2004)
Huchard, M., Dicky, H., Leblanc, H.: Galois lattice as a framework to specify building class hierarchies algorithms. In: Theoretical Informatics and Applications, EDP Science ed., January 2000, vol. 34, pp. 521–548 (2000)
Huchard, M., Leblanc, H.: From Java classes to Java interfaces through Galois lattices. In: Proc. 3rd International Conference on Orders, Algorithms and Applications (Ordal 1999), Montpellier (France), pp. 211–216 (1999)
Osswald, R., Pedersen, W.: Induction of Classifications from Linguistic Data. In: Proc. ECAI-Workshop on Advances in Formal Concept Analysis for Knowledge Discovery in Databases (FCAKDD 2002), Lyon (France) (July 2002)
Pedersen, W.: A Set-Theoretical Approach for the Induction of Inheritance Hierarchies. Electronic Notes in Theoretical Computer Science, 51 (July 2001)
Spinrad, J.P.: Doubly Lexical Orderings of Dense 0-1 Matrices. Information Processing Letters 45, 229–235 (1993)
UML 2.0 superstructure Specification. OMG Final Adopted Specification ptc/03-08-02. URL, http://www.omg.org/
Yahia, A., Lakhal, L., Cicchetti, R., Bordat, J.-P.: iO2, An Algorithmic Method for Building Inheritance Graphs in Object Database Design. In: Thalheim, B. (ed.) ER 1996. LNCS, vol. 1157, pp. 422–437. Springer, Heidelberg (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Berry, A., Huchard, M., McConnell, R.M., Sigayret, A., Spinrad, J.P. (2005). Efficiently Computing a Linear Extension of the Sub-hierarchy of a Concept Lattice. In: Ganter, B., Godin, R. (eds) Formal Concept Analysis. ICFCA 2005. Lecture Notes in Computer Science(), vol 3403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32262-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-540-32262-7_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24525-4
Online ISBN: 978-3-540-32262-7
eBook Packages: Computer ScienceComputer Science (R0)
