Skip to main content

The Finest of its Class: The Natural Point-Based Ternary Calculus \({\mathcal LR}\) for Qualitative Spatial Reasoning

  • Conference paper
Spatial Cognition IV. Reasoning, Action, Interaction (Spatial Cognition 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3343))

Included in the following conference series:

Abstract

In this paper, a ternary qualitative calculus \({\mathcal LR}\) for spatial reasoning is presented that distinguishes between left and right. A theory is outlined for ternary point-based calculi in which all the relations are invariant when all points are mapped by rotations, scalings, or translations (RST relations). For this purpose, we develop methods to determine arbitrary transformations and compositions of RST relations. We pose two criteria which we call practical and natural. ‘Practical’ means that the relation system should be closed under transformations, compositions and intersections and have a finite base that is jointly exhaustive and pairwise disjoint. This implies that the well-known path consistency algorithm [10] can be used to conclude implicit knowledge. ‘Natural’ calculi are close to our natural way of thinking because the base relations and their complements are connected. The main result of the paper is the identification of a maximally refined calculus amongst the practical natural RST calculi, which turns out to be very similar to Ligozat’s flip-flop calculus. From that it follows, e.g., that there is no finite refinement of the TPCC calculus by Moratz et al that is closed under transformations, composition, and intersection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Egenhofer, M.J.: Reasoning about binary topological relations. In: Günther, O., Schek, H.-J. (eds.) SSD 1991. LNCS, vol. 525, pp. 143–160. Springer, Heidelberg (1991)

    Google Scholar 

  2. Frank, A.: Qualitative spatial reasoning with cardinal directions. In: Proceedings of the Seventh Austrian Conference on Artificial Intelligence. Springer, Heidelberg (1991)

    Google Scholar 

  3. Freksa, C.: Using orientation information for qualitative spatial reasoning. In: Frank, A.U., Campari, I., Formentini, U. (eds.) Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, pp. 162–178. Springer, Heidelberg (1992)

    Google Scholar 

  4. Freksa, C., Zimmermann, K.: On the utilization of spatial structures for cognitively plausible and efficient reasoning. In: Proc. of the IEEE International Conference on Systems, Man, and Cybernetics, Chicago, IL, pp. 261–266. IEEE, Los Alamitos (1992)

    Google Scholar 

  5. Isli, A., Cohn, A.G.: A new approach to cyclic ordering of 2D orientations using ternary relation algebras. Artificial Intelligence 122(1-2), 137–187 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Isli, A., Moratz, R.: Qualitative spatial representation: Algebraic models for relative position. Technical Report FBI-HH-M284/99, Univ. Hamburg (1999)

    Google Scholar 

  7. Ladkin, P.B., Maddux, R.: On binary constraint problems. Journal of the Association for Computing Machinery 41(3), 435–469 (1994)

    MATH  MathSciNet  Google Scholar 

  8. Ligozat, G.: Qualitative triangulation for spatial reasoning. In: Campari, I., Frank, A.U. (eds.) COSIT 1993, vol. 716, pp. 54–68. Springer, Heidelberg (1993)

    Google Scholar 

  9. Megiddo, N.: Partial and complete cyclic orders. Bull. Am. Math. Soc 82, 274–276 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  10. Montanari, U.: Networks of constraints: fundamental properties and applications to picture processing. Information Science 7, 95–132 (1974)

    Article  MathSciNet  Google Scholar 

  11. Moratz, R., Nebel, B., Freksa, C.: Qualitative spatial reasoning about relative position. In: Christian, F., et al. (eds.) Spatial Cognition III, pp. 385–400. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Papadias, D., Egenhofer, M.J., Sharma, J.: Hierarchical reasoning about direction relations. In: GIS 1996, Proceedings of the fourth ACM workshop on Advances on Advances in Geographic Information Systems, Rockville, Maryland, USA, November 15-16, pp. 105–112 (1996)

    Google Scholar 

  13. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Nebel, B., Swartout, W., Rich, C. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the 3rd International Conference (KR 1992), Cambridge, MA, October 1992, pp. 165–176. Morgan Kaufmann, San Francisco (1992)

    Google Scholar 

  14. Schlieder, C.: Reasoning about ordering. In: Kuhn, W., Frank, A.U. (eds.) COSIT 1995. LNCS, vol. 988, pp. 341–349. Springer, Heidelberg (1995)

    Google Scholar 

  15. Scivos, A.: Einführung in eine Theorie der ternären RST-Kalküle für qualitatives räumliches Schließen. Diplomarbeit, Albert-Ludwigs-Universität Freiburg, Mathematische Fakultät (2000)

    Google Scholar 

  16. Scivos, A., Nebel, B.: Double-crossing: Decidability and computational complexity of a qualitative calculus for navigation. In: Montello, D.R. (ed.) COSIT 2001. LNCS, vol. 2205, p. 431. Springer, Heidelberg (2001)

    Google Scholar 

  17. Tarski, A.: On the calculus of relations. Journal of Symbolic Logic 6, 73–89 (1941)

    Article  MATH  MathSciNet  Google Scholar 

  18. tom Dieck, T.: Topologie. de Gruyter, Berlin (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scivos, A., Nebel, B. (2005). The Finest of its Class: The Natural Point-Based Ternary Calculus \({\mathcal LR}\) for Qualitative Spatial Reasoning. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds) Spatial Cognition IV. Reasoning, Action, Interaction. Spatial Cognition 2004. Lecture Notes in Computer Science(), vol 3343. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32255-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32255-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25048-7

  • Online ISBN: 978-3-540-32255-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics