Psychological Validity of Schematic Proofs

  • Mateja Jamnik
  • Alan Bundy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2605)


Schematic proofs are functions which can produce a proof of a proposition for each value of their parameters. A schematic proof can be constructed by abstracting a general pattern of proof from several examples of a family of proofs. In this paper we examine several interesting aspects of the use of schematic proofs in mathematics. Furthermore, we pose several conjectures about the psychological validity of the use of schematic proofs in mathematics. These conjectures need testing, hence we propose an empirical study which would either support or refute our conjectures. Ultimately, we suggest that schematic proofs are worthy of a closer and more detailed study and investigation.


Recursive Function Logical Theory Mathematical Induction Schematic Argument Correct Proof 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker, S., Ireland, A., Smaill, A.: On the use of the constructive omega rule within automated deduction. In: Voronkov, A. (ed.) LPAR 1992. LNCS (LNAI), vol. 624, pp. 214–225. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  2. 2.
    Jamnik, M., Bundy, A., Green, I.: On automating diagrammatic proofs of arithmetic arguments. Journal of Logic, Language and Information 8, 297–321 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Sundholm, B.: A Survey of the Omega Rule. PhD thesis, University of Oxford, Oxford, UK (1983)Google Scholar
  4. 4.
    Penrose, R.: Mathematical intelligence. In: Khalfa, J. (ed.) What is Intelligence?, Cambridge, UK, The Darwin College Lectures, pp. 107–136. Cambridge University Press, Cambridge (1994)Google Scholar
  5. 5.
    Lakatos, I.: Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge University Press, Cambridge (1976)zbMATHGoogle Scholar
  6. 6.
    Jamnik, M.: Mathematical Reasoning with Diagrams: From Intuition to Automation. CSLI Press, Stanford (2001)zbMATHGoogle Scholar
  7. 7.
    Gamow, G.: One two three.. infinity: Facts & Speculations of Science. Dover Publications, New York (1988)Google Scholar
  8. 8.
    Hilbert, D.: Über das Unendliche. Mathematische Annalen 95, 161–190 (1926)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Van Heijenoort, J. (ed.): From Frege to Gödel – A Source Book in Mathematical Logic, pp. 1879–1931. Havard University Press, Harvard (1967)zbMATHGoogle Scholar
  10. 10.
    Hilbert, D.: Grundlagen der Geometrie. Teubner, Stuttgart (1899); English translation ’Foundations of Geometry’ published in 1902, by Open Court, ChicagoGoogle Scholar
  11. 11.
    Kempe, A.: On the geographical problem of the four colours. American Journal of Mathematics 2, 193–200 (1879)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Mackenzie, D.: Mechanizing Proof. MIT Press, Boston (2001)zbMATHGoogle Scholar
  13. 13.
    Appel, K., Haken, W.: Every planar map is four colorable. Bulletin of the American Mathematical Society 82, 711–712 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Poincaré, H.: Complément à l’analysis situs. Rendiconti del Circolo Matematico di Palermo 13, 285–343 (1899)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Mateja Jamnik
    • 1
  • Alan Bundy
    • 2
  1. 1.University of Cambridge Computer LaboratoryCambridgeEngland, UK
  2. 2.Centre for Intelligent Systems and their Applications, Division of InformaticsUniversity of EdinburghEdinburgh, ScotlandUK

Personalised recommendations