Advertisement

Extending the Explicit Substitution Paradigm

  • Delia Kesner
  • Stéphane Lengrand
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3467)

Abstract

We present a simple term language with explicit operators for erasure, duplication and substitution enjoying a sound and complete correspondence with the intuitionistic fragment of Linear Logic’s Proof Nets. We establish the good operational behaviour of the language by means of some fundamental properties such as confluence, preservation of strong normalisation, strong normalisation of well-typed terms and step by step simulation. This formalism is the first term calculus with explicit substitutions having full composition and preserving strong normalisation.

Keywords

Intuitionistic Logic Garbage Collection Linear Logic Reduction Rule Weaken Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, M., Cardelli, L., Curien, P.L., Lévy, J.-J.: Explicit substitutions. JFP 4(1), 375–416 (1991)CrossRefGoogle Scholar
  2. 2.
    Abramsky, S.: Computational interpretations of linear logic. TCS 111, 3–57 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Arbiser, A., Bonelli, E., Ríos, A.: Perpetuality in a lambda calculus with explicit substitutions and composition. WAIT, JAIIO (2000)Google Scholar
  4. 4.
    Asperti, A., Guerrini, S.: The Optimal Implementation of Functional Programming Languages. Cambridge Tracts in Theoretical Computer Science, vol. 45. Cambridge University Press, Cambridge (1998)Google Scholar
  5. 5.
    Benaissa, Z.-E.-A., Briaud, D., Lescanne, P., Rouyer-Degli, J.: λυ, a calculus of explicit substitutions which preserves strong normalisation. JFP 6(5), 699–722 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Benton, N., Bierman, G., de Paiva, V., Hyland, M.: A term calculus for intuitionistic linear logic. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 75–90. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  7. 7.
    Bloo, R., Geuvers, H.: Explicit substitution: on the edge of strong normalization. TCS 211(1-2), 375–395 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bloo, R., Rose, K.: Preservation of strong normalization in named lambda calculi with explicit substitution and garbage collection. In: Computing Science in the Netherlands, Netherlands Computer Science Research Foundation, pp. 62–72 (1995)Google Scholar
  9. 9.
    Bonelli, E.: Perpetuality in a named lambda calculus with explicit substitutions. MSCS 11(1), 409–450 (2001)MathSciNetGoogle Scholar
  10. 10.
    Cerrito, S., Kesner, D.: Pattern matching as cut elimination. In: LICS, pp. 98–108 (1999)Google Scholar
  11. 11.
    Church, A.: The calculi of lambda conversion. Princeton University Press, Princeton (1941)Google Scholar
  12. 12.
    The Coq Proof Assistant, http://coq.inria.fr/
  13. 13.
    Danos, V., Joinet, J.-B., Schellinx, H.: Sequent calculi for second order logic. In: Advances in Linear Logic, Cambridge University Press, Cambridge (1995)Google Scholar
  14. 14.
    David, R., Guillaume, B.: A λ-calculus with explicit weakening and explicit substitution. MSCS 11, 169–206 (2001)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Di Cosmo, R., Guerrini, S.: Strong normalization of proof nets modulo structural congruences. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, pp. 75–89. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Di Cosmo, R., Kesner, D.: Strong normalization of explicit substitutions via cut elimination in proof nets. In: LICS, pp. 35–46 (1997)Google Scholar
  17. 17.
    Di Cosmo, R., Kesner, D., Polonovski, E.: Proof nets and explicit substitutions. In: Tiuryn, J. (ed.) FOSSACS 2000. LNCS, vol. 1784, pp. 63–81. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Di Cosmo, R., Kesner, D., Polonovski, E.: Proof nets and explicit substitutions. MSCS 13(3), 409–450 (2003)zbMATHGoogle Scholar
  19. 19.
    Dougherty, D., Lescanne, P.: Reductions, Intersection Types and Explicit Substitutions. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044, pp. 121–135. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Dowek, G., Hardin, T., Kirchner, C.: Higher-order unification via explicit substitutions. In: LICS (1995)Google Scholar
  21. 21.
    Fernández, M., Mackie, I.: Closed reductions in the lambda calculus. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 220–234. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  22. 22.
    Forest, J.: A weak calculus with explicit operators for pattern matching and substitution. In: Tison, S. (ed.) RTA 2002. LNCS, vol. 2378, pp. 174–191. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Ghani, N., de Paiva, V., Ritter, E.: Linear explicit substitutions. IGPL 8(1), 7–31 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Girard, J.-Y.: Linear logic. TCS 50(1), 1–101 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Goubault-Larrecq, J.: A proof of weak termination of typed lambda sigma-calculi. In: Giménez, E. (ed.) TYPES 1996. LNCS, vol. 1512, pp. 134–151. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  26. 26.
    Hardin, T.: Résultats de confluence pour les règles fortes de la logique combinatoire catégorique et liens avec les lambda-calculs. PhD Thesis, Université Paris 7 (1987)Google Scholar
  27. 27.
    Hardin, T., Lévy, J.-J.: A confluent calculus of substitutions. In: France-Japan Artificial Intelligence and Computer Science Symposium (1989)Google Scholar
  28. 28.
    Hardin, T., Maranget, L., Pagano, B.: Functional back-ends within the lambdasigma calculus. In: ICFP (1996)Google Scholar
  29. 29.
    Hendriks, D., van Oostrom, V.: reflectbox{ lambda}. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 136–150. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  30. 30.
    Herbelin, H.: A l-calculus structure isomorphic to sequent calculus structure. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, Springer, Heidelberg (1995)CrossRefGoogle Scholar
  31. 31.
  32. 32.
    Kamareddine, F., Ríos, A.: A λ-calculus à la de Bruijn with explicit substitutions. In: Swierstra, S.D. (ed.) PLILP 1995. LNCS, vol. 982, pp. 45–62. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  33. 33.
    Kesner, D., Lengrand, S.: An Explicit Operator Calculus as the Syntactic Counterpart to a Proof-Net Model (2004), Available at http://www.pps.jussieu.fr/~kesner/papers
  34. 34.
    Khasidashvili, Z., Ogawa, M., van Oostrom, V.: Uniform Normalization Beyond Orthogonality. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 122–136. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  35. 35.
    Klop, J.-W.: Combinatory Reduction Systems, PhD Thesis. Mathematical Centre Tracts, vol. 127. CWI, Amsterdam (1980)Google Scholar
  36. 36.
    Lafont, Y.: Interaction Nets. POPL, pp. 95–108 (1990)Google Scholar
  37. 37.
    Laurent, O.: Polarized proof-nets and lambda-mu calculus. TCS 1(290), 161–188 (2003)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Lengrand, S., Lescanne, P., Dougherty, D., Dezani-Ciancaglini, M., van Bakel, S.: Intersection types for explicit substitutions. I & C 189(1), 17–42 (2004)zbMATHGoogle Scholar
  39. 39.
    Lévy, J.-J., Maranget, L.: Explicit substitutions and programming languages. In: Pandu Rangan, C., Raman, V., Sarukkai, S. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 181–200. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  40. 40.
    Melliès, P.-A.: Typed λ-calculi with explicit substitutions may not terminate. In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 328–334. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  41. 41.
    Nederpelt, R.: Strong Normalization in a Typed Lambda Calculus with Lambda Structured Types. PhD Thesis, Eindhoven University of Technology (1973)Google Scholar
  42. 42.
    Parigot, M.: λμ-calculus: an algorithmic interpretation of classical natural deduction. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  43. 43.
    Polonovski, E.: Substitutions explicites et preuves de normalisation. PhD thesis, Université Paris 7 (2004)Google Scholar
  44. 44.
    Regnier, L.: Une équivalence sur les lambda-termes. TCS 2(126), 281–292 (1994)CrossRefMathSciNetGoogle Scholar
  45. 45.
    Ronchi della Rocca, S., Roversi, L.: Lambda calculus and intuitionistic linear logic. Studia Logica 59(3) (1997)Google Scholar
  46. 46.
    Sinot, F.-R., Fernández, M., Mackie, I.: Efficient Reductions with Director Strings. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 46–60. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  47. 47.
    Sorensen, M.H.: Strong Normalization From Weak Normalization in Typed Lambda-Calculi. I&C 37, 35–71 (1997)MathSciNetGoogle Scholar
  48. 48.
    van Oostrom, V.: Net-calculus (2001), Course Notes available on http://www.phil.uu.nl/~oostrom/typcomp/00-01/net.ps
  49. 49.
    Vestergaard, R., Wells, J.: Cut Rules and Explicit Substitutions. MSCS 11(1) (2001)Google Scholar
  50. 50.
    Wadler, P.: A syntax for linear logic. In: Main, M.G., Melton, A.C., Mislove, M.W., Schmidt, D., Brookes, S.D. (eds.) MFPS 1993. LNCS, vol. 802, pp. 513–529. Springer, Heidelberg (1994)Google Scholar
  51. 51.
    Xi, H.: Weak and Strong Beta Normalisations in Typed Lambda-Calculi. In: de Groote, P., Hindley, J.R. (eds.) TLCA 1997. LNCS, vol. 1210, pp. 390–404. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Delia Kesner
    • 1
  • Stéphane Lengrand
    • 1
    • 2
  1. 1.PPSUniversité Paris 7France
  2. 2.School of Computer ScienceUniversity of St AndrewsUK

Personalised recommendations