Advertisement

A Sufficient Completeness Reasoning Tool for Partial Specifications

  • Joe Hendrix
  • Manuel Clavel
  • José Meseguer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3467)

Abstract

We present the Maude sufficient completeness tool, which explicitly supports sufficient completeness reasoning for partial conditional specifications having sorts and subsorts and with domains of functions defined by conditional memberships. Our tool consists of two main components: (i) a sufficient completeness analyzer that generates a set of proof obligations which if discharged, ensures sufficient completeness; and (ii) Maude’s inductive theorem prover (ITP) that is used as a backend to try to automatically discharge those proof obligations.

Keywords

Proof Obligation Tree Automaton Abstract Data Type Linear Arithmetic Completeness Tool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Meseguer, J.: Membership algebra as a logical framework for equational specification. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer, Heidelberg (1998)Google Scholar
  2. 2.
    Bouhoula, A., Jouannaud, J.P., Meseguer, J.: Specification and proof in membership equational logic. Theoretical Computer Science 236, 35–132 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Meseguer, J., Roşu, G.: A total approach to partial algebraic specification. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 572–584. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Meseguer, J., Palomino, M., Martí-Oliet, N.: Equational abstractions. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 2–16. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Kapur, D., Subramaniam, M.: New uses of linear arithmetic in automated theorem proving by induction. Journal of Automated Reasoning 16, 39–78 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart´ı-Oliet, N., Meseguer, J., Quesada, J.: Maude: Specification and programming in rewriting logic. Theoretical Computer Science 285, 187–243 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Misra, J.: Powerlist: a structure for parallel recursion. ACM Transactions on Programming Languages and Systems 16, 1737–1767 (1994)CrossRefGoogle Scholar
  8. 8.
    Hendrix, J., Clavel, M., Meseguer, J.: A sufficient completeness reasoning tool for partial specifications (extended technical report) (2005), Available on tool website at http://maude.cs.uiuc.edu/tools/scc/
  9. 9.
    Clavel, M.: The ITP tool’s home page (2005), http://maude.sip.ucm.es/itp
  10. 10.
    Guttag, J.: The Specification and Application to Programming of Abstract Data Types. PhD thesis, University of Toronto Computer Science Department, Report CSRG-59 (1975) Google Scholar
  11. 11.
    Guttag, J.V., Horning, J.J.: The algebraic specification of abstract data types. Acta Inf. 10, 27–52 (1978)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Nipkow, T., Weikum, G.: A decidability result about sufficient-completeness of axiomatically specified abstract data types. In: Cremers, A.B., Kriegel, H.-P. (eds.) GI-TCS 1983. LNCS, vol. 145, pp. 257–268. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  13. 13.
    Kapur, D., Narendran, P., Zhang, H.: On sufficient-completeness and related properties of term rewriting systems. Acta Informatica 24, 395–415 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kapur, D., Narendran, P., Rosenkrantz, D.J., Zhang, H.: Sufficient-completeness, ground-reducibility and their complexity. Acta Informatica 28, 311–350 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree automata techniques and applications (1997), Available on: http://www.grappa.univ-lille3.fr/tata release (October 1, 2002)
  16. 16.
    Bouhoula, A., Rusinowitch, M.: SPIKE: A system for automatic inductive proofs. In: Alagar, V.S., Nivat, M. (eds.) AMAST 1995. LNCS, vol. 936, pp. 576–577. Springer, Heidelberg (1995)Google Scholar
  17. 17.
    Kapur, D.: An automated tool for analyzing completeness of equational specifications. In: Proceedings of the 1994 International Symposium on Software Testing and Analysis (ISSTA), Seattle, WA, USA. Software Engineering Notes, Special Issue, August 17-19, pp. 28–43. ACM Press, New York (1994)CrossRefGoogle Scholar
  18. 18.
    Ohsaki, H., Seki, H., Takai, T.: Recognizing boolean closed a-tree languages with membership conditional rewriting mechanism. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 483–498. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Clavel, M., Durán, F., Eker, S., Meseguer, J.: Building equational proving tools by reflection in rewriting logic. In: Cafe: An Industrial-Strength Algebraic Formal Method, Elsevier, Amsterdam (2000)Google Scholar
  20. 20.
    Durán, F., Lucas, S., Meseguer, J., Marché, C., Urbain, X.: Proving termination of membership equational programs. In: Proceedings of the 2004 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-based Program Manipulation, Verona, Italy, August 24-25, pp. 147–158. ACM Press, New York (2004)CrossRefGoogle Scholar
  21. 21.
    Lucas, S., Meseguer, J., Marché, C.: Operational termination of generalized conditional term rewriting systems. Submitted (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Joe Hendrix
    • 1
  • Manuel Clavel
    • 2
  • José Meseguer
    • 1
  1. 1.University of Illinois at Urbana-ChampaignUSA
  2. 2.Universidad Complutense de MadridSpain

Personalised recommendations