Evolve Schema Directly Using Instruction Matrix Based Genetic Programming

  • Gang Li
  • Kin Hong Lee
  • Kwong Sak Leung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3447)

Abstract

This paper proposes a new architecture for tree-based genetic programming to evolve schema directly. It uses fixed length hs-expressions to represent program trees, keeps schema information in an instruction matrix, and extracts individuals from it. In order to manipulate the instruction matrix and the hs-expression, new genetic operators and new matrix functions are developed. The experimental results verify that its results are better than those of the canonical genetic programming on the problems tested in this paper.

Keywords

IMGP hs-expression instruction matrix schema evolution Genetic Programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)MATHGoogle Scholar
  2. 2.
    Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming – An Introduction; On the Automatic Evolution of Computer Programs and its Applications. Morgan Kaufmann, dpunkt.verlag (1998)Google Scholar
  3. 3.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)Google Scholar
  4. 4.
    Rosca, J.P.: Analysis of complexity drift in genetic programming. In: Koza, J.R., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M., Iba, H., Riolo, R.L. (eds.) Genetic Programming 1997: Proceedings of the Second Annual Conference, Stanford University, CA, USA, pp. 286–294. Morgan Kaufmann, San Francisco (1997)Google Scholar
  5. 5.
    Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002)MATHGoogle Scholar
  6. 6.
    Salustowicz, R.P., Schmidhuber, J.: Probabilistic incremental program evolution. Evolutionary Computation 5, 123–141 (1997)CrossRefGoogle Scholar
  7. 7.
    Larranga, P., Lozano, J.A. (eds.): Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  8. 8.
    Sastry, K., Goldberg, D.E.: Probabilistic model building and competent genetic programming, pp. 205–220 (2003)Google Scholar
  9. 9.
    Harik, G.R.: Linkage learning via probabilistic modeling in the ECGA. Technical report, University of Illinois at Urbana-Champaign, Urbana IL, US (1999)Google Scholar
  10. 10.
    Shan, Y., McKay, R.I., Baxter, R., Abbass, H., Essam, D., Nguyen, H.: Grammar model-based program evolution. In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation, Portland, Oregon, pp. 478–485. IEEE Press, Los Alamitos (2004)CrossRefGoogle Scholar
  11. 11.
    Zongker, D., Punch, B.: lilgp 1.01 user’s manual. Technical report, Michigan State University, USA (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Gang Li
    • 1
  • Kin Hong Lee
    • 1
  • Kwong Sak Leung
    • 1
  1. 1.Department of Computer Science and EngineeringThe Chinese University of Hong KongShatin, N.T., Hong Kong

Personalised recommendations