Using Genetic Programming for Multiclass Classification by Simultaneously Solving Component Binary Classification Problems

  • William Smart
  • Mengjie Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3447)


In this paper a new method is presented to solve a series of multiclass object classification problems using Genetic Programming (GP). All component two-class subproblems of the multiclass problem are solved in a single run, using a multi-objective fitness function. Probabilistic methods are used, with each evolved program required to solve only one subproblem. Programs gain a fitness related to their rank at the subproblem that they solve best. The new method is compared with two other GP based methods on four multiclass object classification problems of varying difficulty. The new method outperforms the other methods significantly in terms of both test classification accuracy and training time at the best validation performance in almost all experiments.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koza, J.R.: Genetic programming: on the programming of computers by means of natural selection. MIT Press, London, Cambridge (1992)MATHGoogle Scholar
  2. 2.
    Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, London, Cambridge (1994)MATHGoogle Scholar
  3. 3.
    Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming: An Introduction on the Automatic Evolution of computer programs and its Applications. Morgan Kaufmann Publishers, San Francisco (1998)MATHGoogle Scholar
  4. 4.
    Loveard, T., Ciesielski, V.: Representing classification problems in genetic programming. In: Proceedings of the Congress on Evolutionary Computation, vol. 2, pp. 1070–1077. IEEE Press, Los Alamitos (2001)Google Scholar
  5. 5.
    Song, A., Ciesielski, V., Williams, H.: Texture classifiers generated by genetic programming. In: Fogel, D.B., et al. (eds.) Proceedings of the 2002 Congress on Evolutionary Computation, pp. 243–248. IEEE Press, Los Alamitos (2002)Google Scholar
  6. 6.
    Tackett, W.A.: Genetic programming for feature discovery and image discrimination. In: Forrest, S. (ed.) Proceedings of the 5th International Conference on Genetic Algorithms, pp. 303–309. Morgan Kaufmann, San Francisco (1993)Google Scholar
  7. 7.
    Zhang, M., Ciesielski, V.: Genetic programming for multiple class object detection. In: Foo, N.Y. (ed.) AI 1999. LNCS (LNAI), vol. 1747, pp. 180–192. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Zhang, M., Smart, W.: Multiclass object classification using genetic programming. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 367–376. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Howard, D., Roberts, S.C., Brankin, R.: Target detection in SAR imagery by genetic programming. Advances in Engineering Software 30, 303–311 (1999)CrossRefGoogle Scholar
  10. 10.
    Smart, W., Zhang, M.: Probability based genetic programming for multiclass object classification. In: Zhang, C., W. Guesgen, H., Yeap, W.-K. (eds.) PRICAI 2004. LNCS (LNAI), vol. 3157, pp. 251–261. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Zhang, M., Ciesielski, V., Andreae, P.: A domain independent window-approach to multiclass object detection using genetic programming. EURASIP Journal on Signal Processing, Special Issue on Genetic and Evolutionary Computation for Signal Processing and Image Analysis 2003(8), 841–859 (2003)MATHGoogle Scholar
  12. 12.
    Samaria, F., Harter, A.: Parameterisation of a stochastic model for human face identification. In: 2nd IEEE Workshop on Applications of Computer Vision, Sarasota Florida (July 1994), ORL database is available at
  13. 13.
    Smart, W., Zhang, M.: Classification strategies for image classification in genetic programming. In: Bailey, D. (ed.) Proceeding of Image and Vision Computing Conference, New Zealand, pp. 402–407 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • William Smart
    • 1
  • Mengjie Zhang
    • 1
  1. 1.School of Mathematics, Statistics and Computer SciencesVictoria University of WellingtonWellingtonNew Zealand

Personalised recommendations