On the Correspondence Between Conformance Testing and Regular Inference

  • Therese Berg
  • Olga Grinchtein
  • Bengt Jonsson
  • Martin Leucker
  • Harald Raffelt
  • Bernhard Steffen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3442)

Abstract

Conformance testing for finite state machines and regular inference both aim at identifying the model structure underlying a black box system on the basis of a limited set of observations. Whereas the former technique checks for equivalence with a given conjecture model, the latter techniques addresses the corresponding synthesis problem by means of techniques adopted from automata learning. In this paper we establish a common framework to investigate the similarities of these techniques by showing how results in one area can be transferred to results in the other and to explain the reasons for their differences.

References

  1. [Ang81]
    Angluin, D.: A note on the number of queries needed to identify regular languages. Information and Control 51(1), 76–87 (1981)MATHCrossRefMathSciNetGoogle Scholar
  2. [Ang87]
    Angluin, D.: Learning regular sets from queries and counterexamples. Information and Computation 75(2), 87–106 (1987)MATHCrossRefMathSciNetGoogle Scholar
  3. [BDG97]
    Balcázar, J.L., Díaz, J., Gavaldá, R.: Algorithms for learning finite automata from queries: A unified view. In: Advances in Algorithms, Languages, and Complexity, pp. 53–72. Kluwer, Dordrecht (1997)Google Scholar
  4. [Cho78]
    Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans. on Software Engineering 4(3), 178–187 (1978); Special collection based on COMPSACCrossRefGoogle Scholar
  5. [FvBK+91]
    Fujiwara, S., Bochmann, G.v., Khendek, F., Amalou, M., Ghedamsi, A.: Test selection based on finite state models. IEEE Trans. on Software Engineering 17(6), 591–603 (1991)CrossRefGoogle Scholar
  6. [Gol67]
    Gold, E.M.: Language identification in the limit. Information and Control 10(5), 447–474 (1967)MATHCrossRefGoogle Scholar
  7. [Gol78]
    Gold, E.M.: Complexity of automaton identification from given data. Information and Control 37(3), 302–320 (1978)MATHCrossRefMathSciNetGoogle Scholar
  8. [GPY02]
    Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 357–370. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. [HHNS02]
    Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated regular extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 80–95. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. [HNS03]
    Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learning. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 315–327. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. [LY96]
    Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines – a survey. Proc. IEEE 84(8), 1090–1126 (1996)CrossRefGoogle Scholar
  12. [OG92]
    Oncina, J., García, P.: Inferring regular languages in polynomial update time. In: Pattern Recognition and Image Analysis. Series in Machine Perception and Artificial Intelligence, vol. 1, pp. 49–61. World Scientific, Singapore (1992)CrossRefGoogle Scholar
  13. [PVY99]
    Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: Wu, J., Chanson, S.T., Gao, Q. (eds.) Formal Methods for Protocol Engineering and Distributed Systems, FORTE/PSTV, Beijing, China, pp. 225–240. Kluwer, Dordrecht (1999)Google Scholar
  14. [RS93]
    Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences. Information and Computation 103, 299–347 (1993)MATHCrossRefMathSciNetGoogle Scholar
  15. [SD88]
    Sabnani, K., Dahbura, A.: A protocol test generation procedure. Computer Networks and ISDN Systems 15(4), 285–297 (1988)CrossRefGoogle Scholar
  16. [SH03]
    Steffen, B., Hungar, H.: Behavior-based model construction. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 5–19. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. [Vas73]
    Vasilevski, M.P.: Failure diagnosis of automata. Cybernetic 9(4), 653–665 (1973)CrossRefGoogle Scholar
  18. [VCI90]
    Vuong, S.T., Chan, W.Y.L., Ito, M.R.: The UIOv-method for protocol test sequence generation. In: Proc. 2nd Int. Workshop on Protocol Test Systems, pp. 161–176. North-Holland, Amsterdam (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Therese Berg
    • 1
  • Olga Grinchtein
    • 1
  • Bengt Jonsson
    • 1
  • Martin Leucker
    • 2
  • Harald Raffelt
    • 3
  • Bernhard Steffen
    • 3
  1. 1.Department of Computer SystemsUppsala UniversitySweden
  2. 2.Institute of InformaticsTU MunichGermany
  3. 3.LS VUniversität DortmundGermany

Personalised recommendations