Stochastic Transition Systems for Continuous State Spaces and Non-determinism

  • Stefano Cattani
  • Roberto Segala
  • Marta Kwiatkowska
  • Gethin Norman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3441)

Abstract

We study the interaction between non-deterministic and probabilistic behaviour in systems with continuous state spaces, arbitrary probability distributions and uncountable branching. Models of such systems have been proposed previously. Here, we introduce a model that extends probabilistic automata to the continuous setting. We identify the class of schedulers that ensures measurability properties on executions, and show that such measurability properties are preserved by parallel composition. Finally, we demonstrate how these results allow us to define an alternative notion of weak bisimulation in our model.

References

  1. 1.
    Alfaro, L.d.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford University, Available as Technical report STAN-CS-TR-98-1601 (1997)Google Scholar
  2. 2.
    Ash, R.B.: Real Analysis and Probability. Academic Press, London (1972)Google Scholar
  3. 3.
    Baier, C., Hermanns, H.: Weak bisimulation for fully probabilistic processes. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 119–130. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    Bravetti, M.: Specification and Analysis of Stochastic Real-Time Systems. PhD thesis, Università di Bologna, Padova, Venezia (2002)Google Scholar
  5. 5.
    Bravetti, M., D’Argenio, P.: Tutte le algebre insieme: Concepts, discussions and relations of stochastic process algebras with general distributions. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 44–88. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Cattani, S.: Trace-based Process Algebras for Real-time Probabilistic Systems. PhD thesis, School of Computer Science, The University of Birmingham (forthcoming 2005)Google Scholar
  7. 7.
    D’Argenio, P.R.: Algebras and Automata for Timed and Stochastic Systems. PhD thesis, Department of Computer Science, University of Twente (November 1999)Google Scholar
  8. 8.
    Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled markov processes. Information and Computation 179(2), 163–193 (2002)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Giry, M.: A categorical approach to probability theory. In: Banaschewski, B. (ed.) Categorical Aspects of Topology and Analysis. Lecture Notes in Mathematics, vol. 915, pp. 68–85. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  10. 10.
    Glabbeek, R.v., Smolka, S., Steffen, B.: Reactive, generative, and stratified models of probabilistic processes. Information and Computation 121(1), 59–80 (1995)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Hansson, H.: Time and Probability in Formal Design of Distributed Systems. Real-Time Safety Critical Systems, vol. 1. Elsevier, Amsterdam (1994)Google Scholar
  12. 12.
    Hermanns, H.: Interactive Markov Chains: The Quest for Quantified Quality. LNCS, vol. 2428, p. 57. Springer, Heidelberg (2002)Google Scholar
  13. 13.
    Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  14. 14.
    Hoare, C.: Communicating Sequential Processes. Prentice-Hall International, Englewood Cliffs (1985)MATHGoogle Scholar
  15. 15.
    Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Verifying quantitative properties of continuous probabilistic real-time graphs. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 132–137. Springer, Heidelberg (2000)Google Scholar
  16. 16.
    Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Information and Computation 94(1), 1–28 (1991)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Milner, R.: Communication and Concurrency. Prentice-Hall International, Englewood Cliffs (1989)MATHGoogle Scholar
  18. 18.
    Panangaden, P.: Measure and probability for concurrency theorists. Theoretical Comput. Sci. 253(2), 287–309 (2001)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Philippou, A., Lee, I., Sokolsky, O.: Weak bisimulation for probabilistic systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 334–349. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. 20.
    Segala, R.: A compositional trace-based semantics for probabilistic automata. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 234–248. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  21. 21.
    Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD thesis, MIT, Dept. of Electrical Engineering and Computer Science (1995); Also appears as technical report MIT/LCS/TR-676Google Scholar
  22. 22.
    Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic Journal of Computing 2(2), 250–273 (1995)MathSciNetMATHGoogle Scholar
  23. 23.
    Stoelinga, M.: Alea jacta est: verification of probabilistic, real-time and parametric systems. PhD thesis, University of Nijmegen, The Netherlands (April 2002)Google Scholar
  24. 24.
    Wu, S., Smolka, S., Stark, E.: Composition and behaviors of probabilistic I/O automata. Theoretical Comput. Sci. 176(1-2), 1–38 (1999)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Stefano Cattani
    • 1
  • Roberto Segala
    • 2
  • Marta Kwiatkowska
    • 1
  • Gethin Norman
    • 1
  1. 1.School of Computer ScienceThe University of BirminghamBirminghamUnited Kingdom
  2. 2.Dipartimento di InformaticaUniversità di VeronaVeronaItaly

Personalised recommendations