Safety Is not a Restriction at Level 2 for String Languages

  • K. Aehlig
  • J. G. de Miranda
  • C. -H. L. Ong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3441)


Recent work by Knapik, Niwiński and Urzyczyn (in FOSSACS 2002) has revived interest in the connexions between higher-order grammars and higher-order pushdown automata. Both devices can be viewed as definitions for term trees as well as string languages. In the latter setting we recall the extensive study by Damm (1982), and Damm and Goerdt (1986). There it was shown that a language is accepted by a level-n pushdown automaton if and only if the language is generated by a safe level-n grammar. We show that at level 2 the safety assumption may be removed. It follows that there are no inherently unsafe string languages at level 2.


  1. 1.
    Aehlig, K., de Miranda, J.G., Ong, C.-H.L.: The monadic second order theory of trees given by arbitrary level-two recursion schemes is decidable. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 39–54. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Aehlig, K., de Miranda, J.G., Ong, C.H.L.: Safety is not a restriction at level 2 for string languages. Technical Report PRG-RR-04-23, OUCL (2004)Google Scholar
  3. 3.
    Aho, A.: Indexed grammars - an extension of context-free grammars. J. ACM 15, 647–671 (1968)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Damm, W.: The IO- and OI-hierarchy. TCS 20, 95–207 (1982)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Damm, W., Goerdt, A.: An automata-theoretical characterization of the OI-hierarchy. Information and Control 71, 1–32 (1986)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    de Miranda, J.G., Ong, C.H.L.: A note on deterministic pushdown languages (2004), Available at
  7. 7.
    Knapik, T., Niwiński, D., Urzyczyn, P.: Deciding monadic theories of hyperalgebraic trees. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044, pp. 253–267. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Knapik, T., Niwiński, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 205–222. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Knapik, T., Niwiński, D., Urzyczyn, P., Walukiewicz, I.: Unsafe grammars, panic automata, and decidability, October 25 (2004)Google Scholar
  10. 10.
    Maslov, A.N.: The hierarchy of indexed languages of an arbitrary level. Soviet Math. Dokl. 15, 1170–1174 (1974)MATHGoogle Scholar
  11. 11.
    Stirling, C.: Personal email communication, October 15 (2002)Google Scholar
  12. 12.
    Urzyczyn, P.: Personal email communication, July 26 (2003)Google Scholar
  13. 13.
    Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Banff Higher Order Workshop, pp. 238–266. Springer, Heidelberg (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • K. Aehlig
    • 1
  • J. G. de Miranda
    • 1
  • C. -H. L. Ong
    • 1
  1. 1.Computing LaboratoryOxford UniversityUK

Personalised recommendations