Expressivity of Coalgebraic Modal Logic: The Limits and Beyond

  • Lutz Schröder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3441)


Modal logic has a good claim to being the logic of choice for describing the reactive behaviour of systems modeled as coalgebras. Logics with modal operators obtained from so-called predicate liftings have been shown to be invariant under behavioral equivalence. Expressivity results stating that, conversely, logically indistinguishable states are behaviorally equivalent depend on the existence of separating sets of predicate liftings for the signature functor at hand. Here, we provide a classification result for predicate liftings which leads to an easy criterion for the existence of such separating sets, and we give simple examples of functors that fail to admit expressive normal or monotone modal logics, respectively, or in fact an expressive (unary) modal logic at all. We then move on to polyadic modal logic, where modal operators may take more than one argument formula. We show that every accessible functor admits an expressive polyadic modal logic. Moreover, expressive polyadic modal logics are, unlike unary modal logics, compositional.


  1. 1.
    Barr, M.: Terminal coalgebras in well-founded set theory. Theoret. Comput. Sci. 114, 299–315 (1993)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bartels, F., Sokolova, A., de Vink, E.: A hierarchy of probabilistic system types. In: Coalgebraic Methods in Computer Science. ENTCS, vol. 82. Elsevier, Amsterdam (2003)Google Scholar
  3. 3.
    Chellas, B.: Modal logic, Cambridge (1980)Google Scholar
  4. 4.
    Cîrstea, C.: A compositional approach to defining logics for coalgebras. Theoret. Comput. Sci. 327, 45–69 (2004)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Cîrstea, C., Pattinson, D.: Modular construction of modal logics. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 258–275. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    D’Agostino, G., Visser, A.: Finality regained: A coalgebraic study of Scott-sets and multisets. Arch. Math. Logic 41, 267–298 (2002)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Hansen, H.H., Kupke, C.: A coalgebraic perspective on monotone modal logic. In: Adámek, J., Milius, S. (eds.) Coalgebraic Methods in Computer Science. ENTCS, vol. 106, pp. 121–143. Elsevier, Amsterdam (2004)Google Scholar
  8. 8.
    Hennessy, M., Milner, R.: Algebraic laws for non-determinism and concurrency. J. ACM 32, 137–161 (1985)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Jacobs, B.: Towards a duality result in the modal logic of coalgebras. In: Coalgebraic Methods in Computer Science. ENTCS, vol. 33. Elsevier, Amsterdam (2000)Google Scholar
  10. 10.
    Jónnson, B., Tarski, A.: Boolean algebras with operators I. Amer. J. Math. 73, 891–939 (1951)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Klin, B.: A coalgebraic approach to process equivalence and a coinduction principle for traces. In: Coalgebraic Methods in Computer Science. ENTCS, vol. 106, pp. 201–218. Elsevier, Amsterdam (2004)Google Scholar
  12. 12.
    Kurz, A.: Logics for coalgebras and applications to computer science, Ph.D. thesis, Universität München (2000)Google Scholar
  13. 13.
    Kurz, A.: Specifying coalgebras with modal logic. Theoret. Comput. Sci. 260, 119–138 (2001)Google Scholar
  14. 14.
    Kurz, A.: Logics admitting final semantics. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 238–249. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Inform. Comput. 94, 1–28 (1991)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Moss, L.: Coalgebraic logic. Ann. Pure Appl. Logic 96, 277–317 (1999)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Mossakowski, T., Schröder, L., Roggenbach, M., Reichel, H.: Algebraic-co-algebraic specification in CoCASL. J. Logic Algebraic Programming (to appear)Google Scholar
  18. 18.
    Pattinson, D.: Expressivity results in the modal logic of coalgebras, Ph.D. thesis, Universität München (2001)Google Scholar
  19. 19.
    Pattinson, D.: Semantical principles in the modal logic of coalgebras. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 514–526. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Pattinson, D.: Expressive logics for coalgebras via terminal sequence induction. Notre Dame J. Formal Logic 45, 19–33 (2004)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Power, J., Watanabe, H.: An axiomatics for categories of coalgebras. In: Coalgebraic Methods in Computer Science. ENTCS, vol. 11. Elsevier, Amsterdam (2000)Google Scholar
  22. 22.
    Rößiger, M.: Coalgebras and modal logic. In: Coalgebraic Methods in Computer Science. ENTCS, vol. 33. Elsevier, Amsterdam (2000)Google Scholar
  23. 23.
    Rothe, J., Tews, H., Jacobs, B.: The Coalgebraic Class Specification Language CCSL. J. Universal Comput. Sci. 7, 175–193 (2001)MathSciNetMATHGoogle Scholar
  24. 24.
    Rutten, J.: Universal coalgebra: A theory of systems. Theoret. Comput. Sci. 249, 3–80 (2000)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Siekmann, J., Szabo, P.: A noetherian and confluent rewrite system for idempotent semigroups. Semigroup Forum 25, 83–110 (1982)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Lutz Schröder
    • 1
  1. 1.BISS, Department of Computer ScienceUniversity of BremenGermany

Personalised recommendations