Component Refinement and CSC Solving for STG Decomposition

  • Mark Schaefer
  • Walter Vogler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3441)


STGs (Signal Transition Graphs) give a formalism for the description of asynchronous circuits based on Petri nets. To overcome the state explosion problem one may encounter during circuit synthesis, a nondeterministic algorithm for decomposing STGs was suggested by Chu and improved by one of the present authors.

We study how CSC solving (which is essential for circuit synthesis) can be combined with decomposition. For this purpose the correctness definition for decomposition is enhanced with internal signals and it is shown that speed-independent CSC solving preserves correctness. The latter uses a more general result about correctness of top-down decomposition. Furthermore, we apply our definition to give the first correctness proof for the decomposition method of Carmona and Cortadella.


  1. 1.
    Carmona, J., Cortadella, J.: Input/output compatibility of reactive systems. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp. 360–377. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Carmona, J., Cortadella, J.: ILP models for the synthesis of asynchronous control circuits. In: Proc. of the IEEE/ACM International Conference on Computer Aided Design, pp. 818–825 (2003)Google Scholar
  3. 3.
    Carmona, J.: Structural Methods for the Synthesis of Well-Formed Concurrent Specifications. PhD thesis, Universitat Politécnica de Catalunya (2003)Google Scholar
  4. 4.
    Chu, T.-A.: Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic Specifications. PhD thesis, MIT (1987)Google Scholar
  5. 5.
    Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Petrify: a tool for manipulating concurrent specifications and synthesis of asynchronous controllers. IEICE Trans. Information and Systems E80-D(3), 315–325 (1997)Google Scholar
  6. 6.
    Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Logic Synthesis of Asynchronous Controllers and Interfaces. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Dill, D.: Trace Theory for Automatic Hierarchical Verification of Speed-Independent circuits. MIT Press, Cambridge (1988)Google Scholar
  8. 8.
    Ebergen, J.: Arbiters: an exercise in specifying and decomposing asynchronously communicating components. Sci. of Computer Programming 18, 223–245 (1992)MATHCrossRefGoogle Scholar
  9. 9.
    García-Vallés, F., Colom, J.M.: Structural analysis of signal transition graphs. In: Petri Nets in System Engineering (1997)Google Scholar
  10. 10.
    Kondratyev, A., Kishinevsky, M., Taubin, A.: Synthesis method in self-timed design. Decompositional approach. In: IEEE Int. Conf. VLSI and CAD, pp. 324–327 (1993)Google Scholar
  11. 11.
    Vogler, W., Kangsah, B.: Improved decomposition of signal transition graphs. Technical Report 2004-8, University of Augsburg (2004), http://www.Informatik.Uni-Augsburg.DE/skripts/techreports/
  12. 12.
    Vogler, W., Wollowski, R.: Decomposition in asynchronous circuit design. In: Cortadella, J., Yakovlev, A., Rozenberg, G., et al. (eds.) Concurrency and Hardware Design. LNCS, vol. 2549, pp. 152–190. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Yoneda, T., Onda, H., Myers, C.: Synthesis of speed independent circuits based on decomposition. In: ASYNC 2004, pp. 135–145. IEEE, Los Alamitos (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Mark Schaefer
    • 1
  • Walter Vogler
    • 1
  1. 1.University of AugsburgGermany

Personalised recommendations