Advertisement

Abstract

We show how parallel composition of higher-dimensional automata (HDA) can be expressed categorically in the spirit of Winskel & Nielsen. Employing the notion of computation path introduced by van Glabbeek, we define a new notion of bisimulation of HDA using open maps. We derive a connection between computation paths and carrier sequences of dipaths and show that bisimilarity of HDA can be decided by the use of geometric techniques.

Keywords

Higher-dimensional automata bisimulation open maps directed topology fibrations 

References

  1. 1.
    Bredon, G.E.: Topology and Geometry. Springer, Heidelberg (1993)MATHGoogle Scholar
  2. 2.
    Brown, R., Higgins, P.J.: On the algebra of cubes. Journal of Pure and Applied Algebra 21, 233–260 (1981)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Brown, R., Higgins, P.J.: Tensor products and homotopies for ω-groupoids and crossed complexes. Journal of Pure and Applied Algebra 47, 1–33 (1987)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Cattani, G.L., Sassone, V.: Higher dimensional transition systems. In: Proc. LICS 1996, pp. 55–62. IEEE Press, Los Alamitos (1996)Google Scholar
  5. 5.
    Crans, S.: On Combinatorial Models for Higher Dimensional Homotopies. PhD thesis, Utrecht University (1995)Google Scholar
  6. 6.
    Fahrenberg, U.: A category of higher-dimensional automata. Technical Report R-2005-01, Department of Mathematical Sciences, Aalborg University (2005), http://www.math.aau.dk/research/reports/R-2005-01.ps
  7. 7.
    Fajstrup, L.: Dicovering spaces. Homology, Homotopy and Applications 5(2), 1–17 (2003)MathSciNetMATHGoogle Scholar
  8. 8.
    Fajstrup, L.: Dipaths and dihomotopies in a cubical complex. Report R-2003-22, Department of Mathematical Sciences, Aalborg University (2003), http://www.math.aau.dk/research/reports/R-2003-22.ps, Submitted to Advances in Applied Mathematics
  9. 9.
    Fajstrup, L., Goubault, E., Raussen, M.: Algebraic topology and concurrency. Report R-99-2008, Department of Mathematical Sciences, Aalborg University (1999), http://www.math.aau.dk/research/reports/R-99-2008.ps, Conditionally accepted for publication in Theoretical Computer Science
  10. 10.
    van Glabbeek, R.J.: Bisimulations for higher dimensional automata. Email message (1991), http://theory.stanford.edu/~rvg/hda
  11. 11.
    van Glabbeek, R.J.: On the expressiveness of higher dimensional automata. Preprint (2004), http://www.cse.unsw.edu.au/~rvg/hda.pdf
  12. 12.
    Goubault, E.: The Geometry of Concurrency. PhD thesis, Ecole Normale Supérieure, Paris (1995), http://www.di.ens.fr/~goubault/papers/these.ps.gz
  13. 13.
    Goubault, E.: Labelled cubical sets and asynchronous transition systems: an adjunction. In: Preliminary Proceedings CMCIM 2002 (2002), http://www.di.ens.fr/~goubault/papers/cmcim02.ps.gz
  14. 14.
    Grandis, M.: Directed homotopy theory I. Cahiers de Topologie et Géométrie Différentielle Catégoriques 44, 281–316 (2003), Preprint available as http://arxiv.org/abs/math.AT/0111048
  15. 15.
    Grandis, M.: Directed homotopy theory II. Theory and Applications of Categories 14, 369–391 (2002)MathSciNetGoogle Scholar
  16. 16.
    Grandis, M.: Directed combinatorial homology and noncommutative tori. In: Math. Proc. Cambridge Philos. Soc. (2004) (to appear), Preprint available as http://www.dima.unige.it/~grandis/Bsy.pdf
  17. 17.
    Grandis, M., Mauri, L.: Cubical sets and their site. Theory and Applications of Categories 11(8), 185–211 (2003)MathSciNetMATHGoogle Scholar
  18. 18.
    Jardine, J.F.: Cubical homotopy theory: a beginning (preprint) (2002)Google Scholar
  19. 19.
    Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from open maps. Information and Computation 127(2), 164–185 (1996)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Massey, W.S.: A Basic Course in Algebraic Topology. Graduate Texts in Mathematics, vol. 127. Springer, Heidelberg (1991)MATHGoogle Scholar
  21. 21.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)MATHGoogle Scholar
  22. 22.
    Serre, J.-P.: Homologie singulière des espaces fibrés. PhD thesis, Ecole Normale Supérieure (1951)Google Scholar
  23. 23.
    Winskel, G., Nielsen, M.: Models for concurrency. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 4, pp. 1–148. Clarendon Press, Oxford (1995)Google Scholar
  24. 24.
    Worytkiewicz, K.: Synchronization from a categorical perspective. (preprint) (2004), http://arxiv.org/abs/cs.PL/0411001

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ulrich Fahrenberg
    • 1
  1. 1.Dept. of Mathematical SciencesAalborg UniversityDenmark

Personalised recommendations