Skip to main content

A New Class of Codes for Fingerprinting Schemes

  • Conference paper
  • 892 Accesses

Part of the Lecture Notes in Computer Science book series (LNSC,volume 3439)

Abstract

In this paper we discuss the problem of collusion secure fingerprinting. In the first part of our contribution we prove the existence of equidistant codes that can be used as fingerprinting codes. Then we show that by giving algebraic structure to the equidistant code, the tracing process can be accomplished by passing a modified version of the Viterbi algorithm through the trellis representing the code.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-31979-5_34
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-31979-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 452–465. Springer, Heidelberg (1995)

    Google Scholar 

  2. Bonisoli, A.: Every equidistant linear code is a sequence of dual hamming codes. Ars Combinatoria 18, 181–196 (1984)

    MATH  MathSciNet  Google Scholar 

  3. Cohen, G., Encheva, S., Schaathun, H.G.: On separating codes. Technical report, ENST, Paris (2001)

    Google Scholar 

  4. Domingo-Ferrer, J., Herrera-Joancomartí, J.: Simple collusion-secure fingerprinting schemes for images. In: ITCC 2000, pp. 128–132. IEEE Computer Society, Los Alamitos (2000)

    Google Scholar 

  5. Forney, G.D.: The Viterbi algorithm. Proc. IEEE 61, 268–278 (1973)

    CrossRef  MathSciNet  Google Scholar 

  6. Sagalovich, Y.L.: Separating systems. Probl. Inform. Trans. 30(2), 14–35 (1994)

    MathSciNet  Google Scholar 

  7. Seshadri, N., Sundberg, C.-E.W.: List Viterbi decoding algorithms with applications. IEEE Trans. Comm. 42, 313–323 (1994)

    CrossRef  Google Scholar 

  8. Wolf, J.K.: Efficient maximum likelihood decoding of linear block codes using a trellis. IEEE Trans. Inform. Theory 24, 76–80 (1978)

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernandez, M., Soriano, M., Cotrina, J. (2005). A New Class of Codes for Fingerprinting Schemes. In: Deng, R.H., Bao, F., Pang, H., Zhou, J. (eds) Information Security Practice and Experience. ISPEC 2005. Lecture Notes in Computer Science, vol 3439. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31979-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31979-5_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25584-0

  • Online ISBN: 978-3-540-31979-5

  • eBook Packages: Computer ScienceComputer Science (R0)