The Mojette Transform: The First Ten Years

  • JeanPierre Guédon
  • Nicolas Normand
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3429)

Abstract

In this paper the Mojette transforms class is described. After recalling the birth of the Mojette transform, the Dirac Mojette transform is recalled with its basic properties. Generalizations to spline transform and to nD Mojette transform are also recalled. Applications of the Mojette transform demonstrate the power of frame description instead of basis in order to match different goals ranging from image coding, watermarking, discrete tomography, transmission and distributed storage. Finally, new insights for the future trends of the Mojette transform are sketched.

Keywords

Mathematical Morphology Projection Angle Multiple Description Multiple Description Code Discrete Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aldroubi, A., Unser, M.: Families of wavelet transforms in connection with Shannon’s sampling theory and the Gabor transform. In: Chui, C.K. (ed.) Wavelets: A Tutorial in Theory and Applications, pp. 509–528. Academic Press, London (1992)Google Scholar
  2. 2.
    Del Lungo, A., Nivat, M., Pinzani, R.: The number of convex polyominoes reconstructible from their orthogonal projections. Discrete Math. 157(1-3), 65–78 (1996)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Dorst, L., van den Boomgaard, R.: Morphological signal processing and the slope transform. invited paper for Signal Processing 38, 79–98 (1994)Google Scholar
  4. 4.
    Dudgeon, D.E., Mersereau, R.M.: Multidimensional Digital Signal Processing. Prentice-Hall, Englewood Cliffs (1984)MATHGoogle Scholar
  5. 5.
    Gardner, R.: Geometric Tomography. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1995)MATHGoogle Scholar
  6. 6.
    Gritzmann, P., Nivat, M. (eds.): Discrete Tomography: Algorithms and Complexity, number 97042, Dagstuhl, Germany (January 1997) Google Scholar
  7. 7.
    Guédon, J.: Les problèmes d’échantillonnage dans la reconstruction d’images à partir de projections. PhD thesis, Université de Nantes (Novembre 1990)Google Scholar
  8. 8.
    Guédon, J., Barba, D., Burger, N.: Psychovisual image coding via an exact discrete radon transform. In: Wu, L.T. (ed.) VCIP 1995, Taipei, Taiwan, may, pp. 562–572 (1995); CORESAGoogle Scholar
  9. 9.
    Guédon, J., Bizais, Y.: Bandlimited and haar filtered back-projection reconstuction. IEEE transaction on medical imaging 13(3), 430–440 (1994)CrossRefGoogle Scholar
  10. 10.
    Guédon, J., Normand, N.: Spline mojette transform. application in tomography and communication. In: EUSIPCO (September 2002)Google Scholar
  11. 11.
    Herman, G.T., Altschuler, M.D.: Image Reconstruction from Projections - Implementation and Applications. Topics in Applied Physics. Springer, New York (1979)Google Scholar
  12. 12.
    Katz, M.: Questions of uniqueness and resolution in reconstruction from projections. Lecture Notes in Biomathematics. Springer, New York (1978)MATHGoogle Scholar
  13. 13.
    Kuba, A.: The reconstruction of two-directionally connected binary patterns from their two orthogonal projections. Comput. Vision, Graphics. Image Process (27), 249–265 (1984)Google Scholar
  14. 14.
    Matus, F., Flusser, J.: Image representation via a finite radon transform. IEEE transaction on pattern analysis and machine intelligence 15(10), 996–1006 (1993)CrossRefGoogle Scholar
  15. 15.
    Normand, N., Guédon, J.: La transformée mojette: une représentation redondante pour l’image. Comptes-Rendus de l’Académie des Sciences, 123–126 (January 1998)Google Scholar
  16. 16.
    Ozarow, L.: On a source coding problem with two channels and three receivers. Bell Sys. Tech. Journal 59, 1909–1921 (1980)MATHMathSciNetGoogle Scholar
  17. 17.
    Parrein, B., Normand, N., Guédon, J.: Multiple description coding using exact discrete radon transform. In: Data Compression Conference, Snowbird, March 2001, p. 508. IEEE, Los Alamitos (2001)Google Scholar
  18. 18.
    Parrein, B., Normand, N., Guédon, J.: Multimedia forward error correcting codes for wireless lan. Annals of telecommunications (3-4), 448–463 (2003)Google Scholar
  19. 19.
    Philippé, O., Guédon, J.: Correlation properties of the mojette representation for non-exact image reconstruction. In: Verlag, I.-F. (ed.) Proc. Picture Coding Symposium 1997, Berlin, September 1997, pp. 237–241 (1997)Google Scholar
  20. 20.
    Radon, J.: Über die bestimmung von funktionen durch ihre integralwerte längs gewisser mannigfaltigkeiten. Ber. Ver. Sächs. Akad. Wiss. Leipzig, Math-Phys. Kl. 69, 262–277 (1917) In German; An english translation can be found in S. R. Deans: The Radon Transform and Some of Its Applications, app. AGoogle Scholar
  21. 21.
    Souhard, B., Chatellier, C., Olivier, C.: Simulation d’une chaîne de communication adaptée à la transmission d’images fixes sur canal réel. In: CORESA, Lyon (January 2003)Google Scholar
  22. 22.
    Svalbe, I., Kingston, A.: Farey sequences and discrete radon transform projection angles. In: IWCIA 2003, Palermo (May 2003)Google Scholar
  23. 23.
    Unser, M., Aldroubi, A., Eden, M.: Polynomial spline signal approximations: Filter design and asymptotic equivalence with shannon’s sampling theorem. IEEE Transaction on Information theory 38, 95–103 (1992)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Unser, M., Aldroubi, A., Eden, M.: B-Spline signal processing: Part I - Theory. IEEE Trans. Signal Process 41(2), 821–833 (1993)MATHCrossRefGoogle Scholar
  25. 25.
    Unser, M., Aldroubi, A., Eden, M.: B-Spline signal processing: Part II - Efficient design and applications. IEEE Trans. Signal Process 41(2), 834–848 (1993)MATHCrossRefGoogle Scholar
  26. 26.
    Verbert, P., Guédon, J.: An exact discrete backprojector operator. In: EUSIPCO, Toulouse (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • JeanPierre Guédon
    • 1
  • Nicolas Normand
    • 1
  1. 1.Laboratoire IRCCyN, Team Image & Video Communications CNRS UMR 6795École polytechnique de l’Université de Nantes La Chantrerie Rue Christian PaucNantes

Personalised recommendations