Resolution Pyramids on the FCC and BCC Grids

  • Robin Strand
  • Gunilla Borgefors
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3429)


Partitionings on the face-centered cubic grid and the body-centered cubic grid that are suitable for resolution pyramids are found. The partitionings have properties similar to a partitioning that has been used for the resolution pyramids on the cubic grid. Therefore, they are well-suited for adapting methods to construct multiscale representations developed for the cubic grid. Multiscale representations of images are constructed using different methods.


Grid Point Binary Image Rigid Transformation Voronoi Region Hexagonal Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Matej, S., Lewitt, R.M.: Efficient 3D grids for image reconstruction using spherically-symmetric volume elements. IEEE Transactions on Nuclear Science 42, 1361–1370 (1995)CrossRefGoogle Scholar
  2. 2.
    Bell, S.B.M., Holroyd, F.C., Mason, D.C.: A digital geometry for hexagonal pixels. Image and Vision Computing 7, 194–204 (1989)CrossRefGoogle Scholar
  3. 3.
    Herman, G.T.: Geometry of Digital Spaces. Birkhäuser, Boston (1998)zbMATHGoogle Scholar
  4. 4.
    Borgefors, G.: Hierarchical chamfer matching: A parametric edge matching algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 10, 849–865 (1988)CrossRefGoogle Scholar
  5. 5.
    Rezaee, M.R., van der Zwet, P.M.J., Lelieveldt, B.P.F., van der Geest, R.J., Reiber, J.H.C.: A multiresolution image segmentation technique based on pyramidal segmentation and fuzzy clustering. IEEE Transactions on Image Processing 9, 1238–1248 (2000)CrossRefGoogle Scholar
  6. 6.
    Rosenfeld, A.: Multiresolution image representation. In: Levialdi, S. (ed.) Digital Image Analysis, pp. 18–28 (1984)Google Scholar
  7. 7.
    Burt, P.J.: Tree and pyramid structures for coding hexagonally sampled binary images. Computer Graphics and Image Processing 14, 271–280 (1980)CrossRefGoogle Scholar
  8. 8.
    Lucas, D., Gibson, L.: Image pyramids and partitions. In: Proceedings 7th international Conference on Pattern Recognition, Montreal, pp. 230–233 (1984)Google Scholar
  9. 9.
    Tanimoto, S.L., Crettez, J.-P., Simon, J.-C.: Alternative hierarchies for cellular logic. In: Proceedings 7th international Conference on Pattern Recognition, Montreal, pp. 236–239 (1984)Google Scholar
  10. 10.
    Ahuja, N.: On approaches to polygonal decomposition for hierarchical image representation. Computer Vision, Graphics, and Image Processing 24, 200–214 (1983)CrossRefGoogle Scholar
  11. 11.
    Borgefors, G., Ramella, G., di Baja, G.S., Svensson, S.: On the multiscale representation of 2D and 3D shapes. Graphical Models and Image Processing 61, 44–62 (1999)zbMATHCrossRefGoogle Scholar
  12. 12.
    Borgefors, G., di Baja, G.S., Svensson, S.: Multiresolution representation of shapes in binary images II: Volume images. In: Ahronovitz, E. (ed.) DGCI 1997. LNCS, vol. 1347, pp. 75–86. Springer, Heidelberg (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Robin Strand
    • 1
  • Gunilla Borgefors
    • 2
  1. 1.Centre for Image AnalysisUppsala UniversityUppsalaSweden
  2. 2.Centre for Image AnalysisSwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations