Hierarchical Watersheds Within the Combinatorial Pyramid Framework

  • Luc Brun
  • Myriam Mokhtari
  • Fernand Meyer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3429)


Watershed is one of the most popular tool defined by mathematical morphology. The algorithms which implement the watershed transform generally produce an over segmentation which includes the right image’s boundaries. Based on this last assumption, the segmentation problem turns out to be equivalent to a proper valuation of the saliency of each contour. Using such a measure, hierarchical watershed algorithms use the edge’s saliency conjointly with statistical tests to decimate the initial partition. On the other hand, Irregular Pyramids encode a stack of successively reduced partitions. Combinatorial Pyramids consitute the latest model of this family. Within this framework, each partition is encoded by a combinatorial map which encodes all topological relationships between regions such as multiple boundaries and inclusion relationships. Moreover, the combinatorial pyramid framework provides a direct access to the embedding of the image’s boundaries. We present in this paper a hierarchical watershed algorithm based on combinatorial pyramids. Our method overcomes the problems connected to the presence of noise both within the basins and along the watershed contours.


Double Edge Oriented Matroids Watershed Algorithm Adjacent Basin Watershed Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bertrand, G.: Some properties of topological greyscale watersheds. In: procs. SPIE Vision Geometry XII, vol. 5300, pp. 182–191 (2004)Google Scholar
  2. 2.
    Brun, L.: Traitement d’images couleur et pyramides combinatoires. Habilitation à diriger des recherches, Université de Reims (2002)Google Scholar
  3. 3.
    Brun, L., Kropatsch, W.: Combinatorial pyramids. In: Suvisoft (ed.) IEEE International conference on Image Processing (ICIP), Barcelona, vol. II, pp. 33–37. IEEE, Los Alamitos (2003)Google Scholar
  4. 4.
    Brun, L., Vautrot, P., Meyer, F.: Hierarchical watersheds with inter-pixel boundaries. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3211, pp. 840–847. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Couprie, M., Bertrand, G.: Topological grayscale watershed transformation. In: SPIE Vision Geometry VI Proceedings, vol. 3168, pp. 136–146 (1997)Google Scholar
  6. 6.
    Damiand, G.: Définition et étude d’un modèle topologique minimal de représentation d’images 2d et 3d. PhD thesis, Université des Sciences et Techniques du Languedoc, Décembre (2001)Google Scholar
  7. 7.
    Fiorio, C., Gustedt, J.: Two linear time Union-Find strategies for image processing. Theoretical Computer Science 154(2), 165–181 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Glantz, R., Kropatsch, W.G.: Plane embedding of dually contracted graphs (In Press). In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, p. 348. Springer, Heidelberg (2000) (In Press)CrossRefGoogle Scholar
  9. 9.
    Köthe, U.: Deriving topological representations from edge images. In: Asano, T., Klette, R., Ronse, C. (eds.) Geometry, Morphology, and Computational Imaging. LNCS, vol. 2616, pp. 320–334. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Kropatsch, W.G., Macho, H.: Finding the structure of connected components using dual irregular pyramids. In: Cinquième Colloque DGCI, Université d’Auvergne, September 1995. LLAIC1, pp. 147–158 (1995) (ISBN 2-87663-040-0)Google Scholar
  11. 11.
    Marchadier, J., Arquès, D., Michelin, S.: Thinning grayscale well-composed images. Pattern Recognition Letters 25, 581–590 (2004)CrossRefGoogle Scholar
  12. 12.
    Meyer, F.: Topographic distance and watershed lines. Signal Processing (38), 113–125 (1994)Google Scholar
  13. 13.
    Montanvert, A., Meer, P., Rosenfeld, A.: Hierarchical image analysis using irregular tessellations. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(4), 307–316 (1991)CrossRefGoogle Scholar
  14. 14.
    Najman, L., Couprie, M.: Watershed algorithms and contrast preservation. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 62–71. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical segmentation. IEEETPAMI 18(2), 1163–1173 (1996)Google Scholar
  16. 16.
    Vachier, C., Meyer, F.: A morphological scale-space approach to image segmentation based on connected operators. In: Workshop on Mathematics and Image applications, Paris (September 2000)Google Scholar
  17. 17.
    Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(6), 583–598 (1991)CrossRefGoogle Scholar
  18. 18.
    Webster, J.: Cell complexes, oriented matroids and digital geometry. Theoretical Computer Science 305(1–3), 491–502 (2003)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Luc Brun
    • 1
  • Myriam Mokhtari
    • 1
  • Fernand Meyer
    • 2
  1. 1.GreyC CNRS UMR 6072Équipe Image – EnsicaenCAENFrance
  2. 2.Centre de Morphologie Mathématique (CMM)FontainebleauFrance

Personalised recommendations