A Statistical Approach for Geometric Smoothing of Discrete Surfaces

  • Bertrand Kerautret
  • Achille Braquelaire
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3429)


In this article we propose an original method for discrete surface smoothing. This method is based on a statistical estimation of the discrete tangent plane on the voxels of the discrete surface. A geometrical constraint is used to control the recognition of the tangent plane. The resulting surface representation allows us to get both smooth normal vectors of the surface and a smooth surface mesh while preserving the geometrical properties of the surface.


Digital surfaces smoothing surface mesh euclidean nets discrete normals visualization smoothing 


  1. 1.
    Braquelaire, A., Kerautret, B.: Reconstruction of discrete surfaces from shading images by propagation of geometric features. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 257–266. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Braquelaire, A., Pousset, A.: Automatic and reversible geometric smoothing of the boundary of a discrete 3d object. In: Discrete Geometry for Computer Imagery, vol. 1953, pp. 198–209. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Braquelaire, J.P., Vialard, A.: Euclidean paths: a new representation of boundary of discrete regions. Graphical Models and Images Processing 61, 16–43 (1999)zbMATHCrossRefGoogle Scholar
  4. 4.
    Chassery, J.M., Vittone, J.: DGCI 1997. LNCS, vol. 1347, pp. 99–110. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Coeurjolly, D.: Algorithmique et géométrie discrète pour la caractérisation des courbes et des surfaces. PhD thesis, Laboratoire ERIC (2001)Google Scholar
  6. 6.
    Gouraud, H.: Continous shading of curved surfaces. IEEE Transaction on Computers 20(6), 623–629 (1971)zbMATHCrossRefGoogle Scholar
  7. 7.
    Herman, G.T., Liu, H.K.: Three-dimensional display of human organs from computed tomograms. Computer Graphics and Image Processing 9(1), 1–21 (1979)CrossRefGoogle Scholar
  8. 8.
    Lachaud, J.-O., Montanvert, A.: Deformable meshes with automated topology changes for coarses-to-fine 3d surface extraction. Medical Image Analysis 3(2), 187–207 (1999)CrossRefGoogle Scholar
  9. 9.
    Lorenson, W.E., Cline, H.E.: Marching cubes: A height resolution 3d surface reconstruction algorithm. In: Graphics, C. (ed.), vol. 21, pp. 11–118 (1987)Google Scholar
  10. 10.
    Schramm, J.M.: DGCI 1997. LNCS, vol. 1347, pp. 87–98. Springer, Heidelberg (1997)Google Scholar
  11. 11.
    Terzopoulos, D., Witkin, A., Kass, M.: Constraints on deformable models: Recovering 3d shape and nonrigid motion. Artificial Intelligence 36, 91–123 (1988)zbMATHCrossRefGoogle Scholar
  12. 12.
    Thürmer, G.: Smoothing normal on discrete surfaces while preserving slope discontinuities. Computer Graphics Forum 20(2), 103–114 (2001)zbMATHCrossRefGoogle Scholar
  13. 13.
    Thürmer, G., Wütrich, C.A.: Varying neighbourhood parameters for computation of normals on surfaces in discrete space. In: Press, I.C.S. (ed.) Computer Graphics International, pp. 616–625. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  14. 14.
    Thürmer, G., Wütrich, C.A.: Polygon mesh generation for discrete surfaces in 3d space. In: Eighth Eurographics Workshop on Visualisation in Scientific Computing, pp. 117–126 (1997)Google Scholar
  15. 15.
    Vialard, A.: Chemins euclidiens: Un modèle de représentation des contours discrets. Phd thesis, Université Bordeaux 1 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Bertrand Kerautret
    • 1
  • Achille Braquelaire
    • 1
  1. 1.LaBRI, Laboratoire Bordelais de Recherche en Informatique, UMR 5800Université Bordeaux 1TalenceFrance

Personalised recommendations