Advertisement

A Low Complexity Discrete Radiosity Method

  • Pierre Y. Chatelier
  • Rémy Malgouyres
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3429)

Abstract

Radiosity in 3D scenes is usually computed using a discretization of the surfaces into patches. A discretization into voxels is possible, coupled with the use of discrete geometry. An algorithm for radiosity solving with voxels is introduced, lowering the theoretical complexity to an O(N log N) + O(N), where the O(N) is largely dominant in practice, so that the apparent complexity is linear for time and space, with respect to the number of voxels in the scene. The method also fits in RAM and does not need disk storage. Instead of 3D discrete line traversal, a new algorithm is described to perform visibility computation. The voxel-based radiosity equation assumes the ideal diffuse case and uses solid angles similarly to the hemicube.

Keywords

Radiosity voxels discrete geometry linear complexity visibility ideal diffuse case 

References

  1. 1.
    Amanatides, J., Woo, A.: A fast voxel traversal algorithm for ray tracing. In: Eurographics 1987, pp. 3–10. Elsevier Science Publishers, Amsterdam (1987)Google Scholar
  2. 2.
    Cohen, M.F., Greenberg, D.P.: The hemi-cube: a radiosity solution for complex environments. In: SIGGRAPH 1985: Proceedings of the 12th annual conference on Computer graphics and interactive techniques, pp. 31–40. ACM Press, New York (1985)CrossRefGoogle Scholar
  3. 3.
    Isabelle Debled-Rennesson. Étude et reconnaissance des droites et plans discrets. PhD thesis, Université Louis Pasteur, Strasbourg (1995)Google Scholar
  4. 4.
    Sillion, F.X., Puech, C.: Radiosity & Global Illumination. Morgan Kaufmann, San Francisco (1994)Google Scholar
  5. 5.
    Malgouyres, R.: A discrete radiosity method. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 428–438. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Reveillès, J.-P.: Géometrie discrète, calcul en nombres entiers et algorithmique. PhD thesis, Université Louis Pasteur, Strasbourg (1991)Google Scholar
  7. 7.
    Sramek, M., Kaufman, A.: Vxt: a c++ class library for object voxelization. Volume Graphics, 119–134 (2000)Google Scholar
  8. 8.
    Stolte, N., Caubet, R.: Discrete ray-tracing of huge voxel spaces. Comput. Graph. Forum 14(3), 383–394 (1995)CrossRefGoogle Scholar
  9. 9.
    Yagel, R., Cohen, D., Kaufman, A.: Discrete ray tracing. IEEE Computer Graphics & Applications 12(9), 19–28 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Pierre Y. Chatelier
    • 1
  • Rémy Malgouyres
    • 1
  1. 1.LLAIC, Clermont-Ferrand 

Personalised recommendations