Optimal Blurred Segments Decomposition in Linear Time

  • Isabelle Debled-Rennesson
  • Fabien Feschet
  • Jocelyne Rouyer-Degli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3429)


Blurred (previously named fuzzy) segments were introduced by Debled-Rennesson et al [1,2] as an extension of the arithmetical approach of Reveillès [11] on discrete lines, to take into account noise in digital images. An incremental linear-time algorithm was presented to decompose a discrete curve into blurred segments with order bounded by a parameter d. However, that algorithm fails to segment discrete curves into a minimal number of blurred segments. We show in this paper, that this characteristic is intrinsic to the whole class of blurred segments. We thus introduce a subclass of blurred segments, based on a geometric measure of thickness. We provide a new convex hull based incremental linear time algorithm for segmenting discrete curves into a minimal number of thin blurred segments.


Convex Hull Linear Time Vertical Distance Recognition Algorithm Integer Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Debled-Rennesson, I., Rémy, J.-L., Rouyer, J.: Segmentation of discrete curves into fuzzy segments. In: 9th International Workshop on Combinatorial Image Analysis. Electronic Notes in Discrete Mathematics, vol. 12 (2003)Google Scholar
  2. 2.
    Debled-Rennesson, I., Rémy, J.-L., Rouyer, J.: Segmentation of discrete curves into fuzzy segments, extended version. Technical report, INRIA Report RR-4989 (2003),
  3. 3.
    Debled-Rennesson, I., Reveillès, J.P.: A linear algorithm for segmentation of digital curves. IJPRAI 9(6) (December 1995)Google Scholar
  4. 4.
    Feschet, F., Tougne, L.: Optimal time computation of the tangent of a discrete curve: application to the curvature. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 31–40. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Houle, M.E., Toussaint, G.T.: Computing the width of a set. IEEE Trans. on Pattern Analysis and Machine Intelligence 10(5), 761–765 (1988)zbMATHCrossRefGoogle Scholar
  6. 6.
    Kolesnikov, A., Fränti, P.: Reduced-search dynamic programming for approximation of polygonal curves. Pattern Recognition Letter 24(14), 2243–2254 (2003)zbMATHCrossRefGoogle Scholar
  7. 7.
    Lindenbaum, M., Bruckstein, A.: On Recursive, O(N) Partitioning of a Digitized Curve into Digital Straight Segments. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(9), 949–953 (1993)CrossRefGoogle Scholar
  8. 8.
    Melkman, A.: On-line Construction of the Convex Hull of a Simple Polygon. Information Processing Letters 25, 11–12 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Perez, J., Vidal, E.: Optimum polygonal approximation of digitized curves. Pattern Recognition Letter 15, 743–750 (1994)zbMATHCrossRefGoogle Scholar
  10. 10.
    Preparata, F.P., Shamos, M.I.: Computational Geometry: an Introduction. Springer, Heidelberg (1985)Google Scholar
  11. 11.
    Reveillès, J.P.: Géométrie discrète, calculs en nombres entiers et algorithmique. Thèse d’Etat – Université Louis Pasteur (1991)Google Scholar
  12. 12.
    Rosenfeld, A., Klette, R.: Digital Straightness – a review. Discrete Applied Math. 139(1–3), 197–230 (2004)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Rosin, P.L.: Techniques for assessing polygonal approximations of curves. IEEE Transactions on PAMI 19(6), 659–666 (1997)Google Scholar
  14. 14.
    Smeulders, A.W.M., Dorst, L.: Decomposition of discrete curves into piecewise straight segments in linear time. Contemporary Mathematics 119, 169–195 (1991)MathSciNetGoogle Scholar
  15. 15.
    Yin, P.: A tabu search approach to polygonal approximation of digital curves. International Journal of Pattern Recognition and Artificial Intelligence 14(2), 243–255 (2000)CrossRefGoogle Scholar
  16. 16.
    Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recognition 37(1), 1–19 (2004)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Isabelle Debled-Rennesson
    • 1
  • Fabien Feschet
    • 2
  • Jocelyne Rouyer-Degli
    • 1
  1. 1.LORIA NancyVandœuvre-lès-Nancy
  2. 2.LLAIC – IUT Clermont-FerrandAubièreFrance

Personalised recommendations