Local Point Configurations of Discrete Combinatorial Surfaces

  • Yukiko Kenmochi
  • Yusuke Nomura
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3429)


Representing discrete objects by polyhedral complexes, we study topological properties of boundary points and surface points. We then obtain the local point configurations of discrete surfaces which are also considered to be boundaries of discrete objects.


Boundary Point Topological Property Local Point Simplicity Surface Discrete Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alexandrov, P.S.: Combinatorial Topology, vol. 1. Graylock Press, Rochester (1956)Google Scholar
  2. 2.
    Cohen, L.D.: On active contour models and balloons. Computer Vision, Graphics and Image Processing: Image Understanding 53(2), 211–218 (1991)zbMATHGoogle Scholar
  3. 3.
    Couprie, M., Bertrand, G.: Simplicity surface: a new definition of surfaces in Z 3. In: Vision Geometry VII, Proceedings of SPIE, vol. 3454, pp. 40–51 (1998)Google Scholar
  4. 4.
    Esnard, A., Lachaud, J.-O., Vialard, A.: Discrete deformable boundaries for 3D image segmentation. Technical Report No. 1270-02, LaBRI, University of Bordeaux 1 (2002)Google Scholar
  5. 5.
    Françon, J.: Discrete combinatorial surfaces. Graphical Models and Image Processing 57(1), 20–26 (1995)CrossRefGoogle Scholar
  6. 6.
    Françon, J.: Sur la topologie d’un plan arithmétique. Theoretical Computer Science 156, 159–176 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Jonker, P.P., Svensson, S.: The generation of N dimensional shape primitives. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 420–433. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Kenmochi, Y., Imiya, A., Ichikawa, A.: Discrete combinatorial geometry. Pattern Recognition 30(10), 1719–1728 (1997)zbMATHCrossRefGoogle Scholar
  9. 9.
    Kenmochi, Y., Imiya, A.: Combinatorial topologies for discrete planes. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 144–153. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Kenmochi, Y., Imiya, A.: Combinatorial boundary tracking of a 3D lattice point set. submitted to Journal of Visual Communication and Image RepresentationGoogle Scholar
  11. 11.
    Morgenthaler, D.G., Rosenfeld, A.: Surfaces in three-dimensional digital images. Information and Control 51, 227–247 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Stillwell, J.: Classical Topology and Combinatorial Group Theory. Springer, New York (1993)zbMATHGoogle Scholar
  13. 13.
    Ziegler, G.M.: Lectures on Polytopes. Springer, New York (1995)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Yukiko Kenmochi
    • 1
  • Yusuke Nomura
    • 2
  1. 1.UMR 8049 – IGM, CNRS/University of Marne-la-Vallée/ESIEEFrance
  2. 2.Department of Information TechnologyOkayama UniversityJapan

Personalised recommendations