Discrete Epipolar Geometry

  • Masatoshi Hamanaka
  • Yukiko Kenmochi
  • Akihiro Sugimoto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3429)


The epipolar geometry, which lies in the basis of 3D reconstruction techniques in the field of computer vision, is formulated in continuous spaces and gives geometric relationships between different views of a point in space. In applications, however, we cannot deal with points themselves in digital images. This is because digital images involve some digitization process and the smallest unit in digital images is a pixel. In this paper, we propose a discrete version of the epipolar geometry, called the discrete epipolar geometry, that gives geometric relationships between pixels rather than points. We then apply this discrete epipolar geometry to 3D reconstruction.


  1. 1.
    Andres, E.: Discrete Linear Objects in Dimension n:the Standard Model. Graphical Models 65, 92–111 (2003)zbMATHCrossRefGoogle Scholar
  2. 2.
    Blostein, S.D., Huang, T.S.: Error Analysis in Stereo Determination of 3-D Point Positions. IEEE Trans. on PAMI 9(6), 752–765 (1987)Google Scholar
  3. 3.
    Faugeras, O.: Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press, Cambridge (1993)Google Scholar
  4. 4.
    Forsyth, D., Ponce, J.: Computer Vision: A Modern Approach. Prentice-Hall, Englewood Cliffs (2002)Google Scholar
  5. 5.
    Furukawa, R., Kawasaki, H.: Error Analysis of 3D Measurement System Based on Sensitivity of Measuring Conditions. In: Proc. of ACCV, vol. 2, pp. 664–669 (2004)Google Scholar
  6. 6.
    Hartley, R., Sturm, P.: Triangulation. CVIU 68(2), 146–157 (1997)Google Scholar
  7. 7.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  8. 8.
    Kanatani, K.: Statistical Optimization for Geometric Computation: Theory and Practice. Elsevier, Amsterdam (1996)zbMATHGoogle Scholar
  9. 9.
    Meer, P., Mintz, D., Kim, D.Y., Rosenfeld, A.: Robust Regression Methods in Computer Vision. Int. J. of Computer Vision 6, 59–70 (1991)CrossRefGoogle Scholar
  10. 10.
    Montanari, U.: On Limit Properties in Digitization Schemes. Journal of ACM 17(2), 348–360 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Rodriguez, J.J., Aggarwal, J.K.: Stochastic Analysis of Stereo Quantization Error. IEEE Trans. on PAMI 12(5), 467–470 (1990)Google Scholar
  12. 12.
    Stewart, C.V.: Robust Parameter Estimation in Computer Vision. SIAM Reviews 41(3), 513–537 (1999)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Masatoshi Hamanaka
    • 1
  • Yukiko Kenmochi
    • 2
  • Akihiro Sugimoto
    • 3
  1. 1.Department of Information TechnologyOkayama UniversityJapan
  2. 2.UMR 8049 – IGM, CNRS/University of Marne-la-Vallée/ESIEEFrance
  3. 3.National Institute of InformaticsJapan

Personalised recommendations