Advertisement

Supercover Model and Digital Straight Line Recognition on Irregular Isothetic Grids

  • David Coeurjolly
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3429)

Abstract

On the classical discrete grid, the analysis of digital straight lines (DSL for short) has been intensively studied for nearly half a century. In this article, we are interested in a discrete geometry on irregular grids. More precisely, our goal is to define geometrical properties on irregular isothetic grids that are tilings of the Euclidean plane with different sized axis parallel rectangles.

Keywords

Interval Arithmetic Irregular Grid Discrete Curve Gray Pixel Linear Inequality System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Andrès, E.: Modélisation analytique discrète d’objets géométriques. Master’s thesis, Laboratoire IRCOM-SIC, Université de Poitiers (2000)Google Scholar
  2. 2.
    Andrès, E., Nehlig, P., Françon, J.: Tunnel-free supercover 3D polygons and polyhedra. Computer Graphics Forum 16(3), C3–C13 (1997)CrossRefGoogle Scholar
  3. 3.
    Bresenham, J.: An incremental algorithm for digital plotting. In: Proc. ACM Natl. Conf. (1963)Google Scholar
  4. 4.
    Brimkov, V.E., Dantchev, S.S.: Digital hyperplane recognition in arbitrary fixed dimension. Technical report, CITR-TR-154 Center for Image Technology and Robotics, University of Auckland, New Zealand (2004)Google Scholar
  5. 5.
    Bühler, K.: Linear interval estimations for parametric objects: Theory and application. pp. 522–531Google Scholar
  6. 6.
    Buzer, L.: An incremental linear algorithm for digital line and plane recognition using a linear incremental feasibility problem. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 372–381. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators of digital curves. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 252–258 (2004)CrossRefGoogle Scholar
  8. 8.
    Coeurjolly, D., Tougne, L.: Digital straight line recognition on heterogeneous grids. In: SPIE Vision Geometry XII, san Jose, USA, vol. 5300, pp. 108–116 (2004)Google Scholar
  9. 9.
    Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. Graphical models and image processing: GMIP 57(6), 453–461 (1995), doi:10.1006/gmip.1995.1039CrossRefGoogle Scholar
  10. 10.
    de Figueiredo, L.H., Stolfi, J.: Self-validated numerical methods and applications (1997), http://www.dcc.unicamp.br/~stolfi/EXPORT/projects/affine-arith/
  11. 11.
    Debled, I., Reveillès, J.P.: A linear algorithm for segmentation of digital curves. In: Third International Workshop on parallel Image Analysis (June 1994)Google Scholar
  12. 12.
    Dorst, L., Smeulders, A.W.M.: Discrete representation of straight lines. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 450–463 (1984)zbMATHCrossRefGoogle Scholar
  13. 13.
    Dorst, L., Smeulders, A.W.M.: Length estimators for digitized contours. Computer Vision, Graphics, and Image Processing 40(3), 311–333 (1987)CrossRefGoogle Scholar
  14. 14.
    Dorst, L., Smeulders, A.W.M.: Discrete straight line segments: Parameters, primitives and properties. In: Melter, R., Bhattacharya, P., Rosenfeld, A. (eds.) Vision Geometry, series Contemporary Mathematics, vol. 119, pp. 45–62. American Mathematical Society, Providence (1991)Google Scholar
  15. 15.
    Hübler, A., Creutzburg, V.W.E.: Decomposition of digital arcs and contours into a minimal number of digital straight line segments. In: Proc. 6th Intl. Conf. on Pattern Recognition, p. 1218 (1982) Google Scholar
  16. 16.
    Finkel, R.A., Bentley, J.L.: Quad trees: a dsta structure for retrieval on composite key. Acta Informatica 4(1), 1–9 (1974)zbMATHCrossRefGoogle Scholar
  17. 17.
    Klette, R., Yip, B.: The length of digital curves. Machine Graphics & Vision 9, 673–703 (2000); Klette, R., Kovalevsky, V.V., Yip, B.: Length estimation of digital curves. In: Proc. Vision Geometry VIII. SPIE, vol. 3811, pp. 117–129 (extended version)Google Scholar
  18. 18.
    Lindenbaum, M., Bruckstein, A.M.: On recursive, o(n) partitioning of a digitized curve into digital straigth segments. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(9), 949–953 (1993)CrossRefGoogle Scholar
  19. 19.
    McIlroy, M.D.: A note on discrete representation of lines. AT&T Technical Journal 64(2), 481–490 (1985)Google Scholar
  20. 20.
    Meggido, N.: Linear programming in linear time when the dimension is fixed. Journal of the ACM 31(1), 114–127 (1984)CrossRefGoogle Scholar
  21. 21.
    Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs, N.J (1966)zbMATHGoogle Scholar
  22. 22.
    Moore, R.E.: Methods and Applications of Interval Arithmetic. Studies in Applied Mathematics. SIAM, Philadelphia (1979)Google Scholar
  23. 23.
    Preparata, F.P., Shamos, M.I.: Computational Geometry : An Introduction. Springer, Heidelberg (1985)Google Scholar
  24. 24.
    Rosenfeld, A.: Connectivity in digital pictures. Journal of the ACM 17(1), 146–160 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Rosenfeld, A.: Digital straight lines segments. IEEE Transactions on Computers, 1264–1369 (1974)Google Scholar
  26. 26.
    Rosenfeld, A., Klette, R.: Digital straightness. In: Fourey, S., Herman, G.T., Kong, T.Y. (eds.) International Workshop on Combinatorial Image Analysis, Temple University, Philadelphia, U.S.A, August 2001. Electronic Notes in Theoretical Computer Science, vol. 46, Elsevier Science Publishers, Amsterdam (2001)Google Scholar
  27. 27.
    Sintorn, I.-M., Borgefors, G.: Weighted distance transforms for images using elongated voxel grids. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 244–254. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • David Coeurjolly
    • 1
  1. 1.Laboratoire LIRIS – CNRS FRE 2672Université Claude Bernard Lyon1VilleurbanneFrance

Personalised recommendations