An Elementary Algorithm for Digital Line Recognition in the General Case

  • Lilian Buzer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3429)

Abstract

This paper is concerned with the naive and, more generally, α-thick digital line recognition problem. Previous incremental algorithms deal with the 8-connected case [DR95] or with sophisticated machinery coming from Linear Programming [Buz03]. We present the first elementary method [Buz02] that works with any set of points (not necessarily 8-connected) and we propose a linear time algorithm under some restrictions (which were implicitly assumed in [DR95]). This paper deals with implementation details giving pseudo-code of our method. We insist on linking the recognition problem to the intrinsic properties of convex hulls.

Keywords

Digital line incremental recognition convex hull thickness implementation 

References

  1. de Berg, M., van Kreveld, M., Schirra, S.: A new approach to subdivision simplification. In: Proc. of Auto-Carto, vol. 12, pp. 79–88 (1995)Google Scholar
  2. Buzer, L.: Reconnaissance des plans discrets - Simplification polygonale. Thèse, Université d’Auvergne, Clermont-Ferrand (2002)Google Scholar
  3. Buzer, L.: A linear incremental algorithm for naive and standard digital lines and planes recognition. Graphical Models 65(1-3), 61–76 (2003)MATHCrossRefGoogle Scholar
  4. Debled-Rennesson, I., Reveillès, J.-P.: A linear algorithm for segmentation of digital curves. International Journal of Pattern Recognition and Artificial Intelligence 9(6) (December 1995)Google Scholar
  5. Houle, M.E., Toussaint, G.T.: Computing the width of a set. IEEE Trans. Pattern Anal. Mach. Intell., PAMI 10, 761–765 (1988)MATHCrossRefGoogle Scholar
  6. Melkman, A.A.: On-line construction of the convex hull of a simple polyline. Information Processing Letters 25, 11–12 (1987)MATHCrossRefMathSciNetGoogle Scholar
  7. Preparata, F.P., Shamos, M.I.: Computational Geometry. Springer, Heidelberg (1985)Google Scholar
  8. Reveillès, J.P.: Géometrie discrète, calculs en nombre entiers et algorithmique. Thèse d’état, Université Louis Pasteur, Strasbourg (1991)Google Scholar
  9. Toussaint, G.T.: Solving geometric problems with the rotating calipers. In: Proceedings of IEEE MELECON 1983, Athens, Greece (May 1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Lilian Buzer
    • 1
    • 2
  1. 1.A2SI LaboratoryESIEENoisy-Le-GrandFrance
  2. 2.Institut Gaspard MongeUnité Mixte CNRS-ESIEE, UMR 8049 

Personalised recommendations