Complexity Analysis for Digital Hyperplane Recognition in Arbitrary Fixed Dimension

  • Valentin E. Brimkov
  • Stefan S. Dantchev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3429)


We consider the following problem. Given a set of points M = {p 1,p 2...p m } ⊆ ℝ n , decide whether M is a portion of a digital hyperplane and, if so, determine its analytical representation. In our setting p 1,p 2...p m may be arbitrary points (possibly, with rational and/or irrational coefficients) and the dimension n may be any arbitrary fixed integer. We provide an algorithm that solves this digital hyperplane recognition problem by reducing it to an integer linear programming problem of fixed dimension within an algebraic model of computation. The algorithm performs O(mlogD) arithmetic operations, where D is a bound on the norm of the domain elements.


Digital hyperplane digital plane recognition integer programming 


  1. 1.
    Andres, E.: Modélisation Analytique Discrè te d’Objets Géomé triques, Thèse de habilitation à diriger des recherches, Universit‘’e de Poitiers, Poitiers, France (2001)Google Scholar
  2. 2.
    Andres, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. Graphical Models Image Processing 59, 302–309 (1997)CrossRefGoogle Scholar
  3. 3.
    Blum, L., Shub, M., Smale, S.: On a Theory of Computation and Complexity over the Real Numbers: NP-Completeness, Recursive Functions and Universal Machines. Bull. Amer. Math. Soc (NS) 21, 1–46 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brimkov, V.E., Andres, E., Barneva, R.P.: Object Discretizations in Higher Dimensions. Pattern Recognition Letters 23, 623–636 (2002)zbMATHCrossRefGoogle Scholar
  5. 5.
    Brimkov, V.E., Coeurjolly, D., Klette, R.: Digital Planarity - A Review, CITR-TR 142 (2004)Google Scholar
  6. 6.
    Brimkov, V.E., Danchev, S.S.: Real Data – Integer Solution Problems within the Blum-Shub-Smale Computational Model. J. of Complexity 13, 279–300 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Brimkov, V.E., Dantchev, S.S.: On the complexity of integer programming in the blum-shub-smale computational model. In: Watanabe, O., Hagiya, M., Ito, T., van Leeuwen, J., Mosses, P.D. (eds.) TCS 2000. LNCS, vol. 1872, pp. 286–300. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Buzer, L.: A Linear Incremental Algorithm for Naive and Standard Digital Dines and Planes Recognition. Graphical Models 65, 61–76 (2003)zbMATHCrossRefGoogle Scholar
  9. 9.
    Debled-Rennesson, I., Reveillès, J.-P.: A New Approach to Digital Planes. In: Vision Geometry III, vol. 2356, pp. 12–21. SPIE, San Jose (1994)Google Scholar
  10. 10.
    Françon, J., Schramm, J.M., Tajine, M.: Recognizing Arithmetic Straight Lines and Planes. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 141–150. Springer, Heidelberg (1996)Google Scholar
  11. 11.
    Hastad, J., Just, B., Lagarias, J.C., Schnoor, C.P.: Polynomial Time Algorithms for Finding Integer Relations among Real Numbers. SIAM J. Comput. 18, 859–881 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kalai, G.: A Subexponential Randomized Simplex Algorithm. In: 24th Annual ACM Symposium on the Theory of Computation, pp. 475–482. ACM Press, New York (1992)Google Scholar
  13. 13.
    Kannan, R., Bachem, A.: Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix. SIAM J. Comput. 8, 499–507 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Klette, R., Stojmenović, I., Žunić, J.: A Parametrization of Digital Planes by Least Square Fits and Generalizations. Graphical Models Image Processing 58, 295–300 (1996)CrossRefGoogle Scholar
  15. 15.
    Klette, R., Sun, H.-J.: Digital Planar Segment Based Polyhedrization for Surface Area Estimation. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) Visual Form 2001, pp. 356–366. Springer, Berlin (2001)CrossRefGoogle Scholar
  16. 16.
    Lenstra Jr., H.W.: Integer Programming with a Fixed Number of Variables. Math. Oper. Res. 8, 538–548 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring Polynomials with Rational Coefficients. Math. Ann. 261, 515–534 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Megiddo, N.: Linear Programming in Linear Time when the Dimension is Fixed. J. of ACM 31(1), 114–127 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Novak, E.: The Real Number Model in Numerical Analysis. J. of Complexity 11, 57–73 (1994)CrossRefGoogle Scholar
  20. 20.
    Preparata, F.P., Shamos, M.I.: Computational Geometry. Springer, Heidelberg (1985)Google Scholar
  21. 21.
    Reveillès, J.-P.: Géométrie Discrète, Calcul en Nombres Entiers et Algorithmique, Thèse d’état, Univ. Louis Pasteur, Strasbourg (1991)Google Scholar
  22. 22.
    Rosenfeld, A., Klette, R.: Digital Straightness. Electronic Notes in Theoretical Computer Science 46 (2001)Google Scholar
  23. 23.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)zbMATHGoogle Scholar
  24. 24.
    Stojmenović, I., Tosić, R.: Digitization Schemes and the Recognition of Digital Straight Lines, Hyperplanes and Flats in Arbitrary Dimensions. Vision Geometry, Contemporary Mathematics Series 119, 197–212 (1991)Google Scholar
  25. 25.
    Strassen, V.: Algebraic Complexity Theory. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. A, pp. 633–672. Elsevier, Amsterdam (1990)Google Scholar
  26. 26.
    Veelaert, P.: Digital Planarity of Rectangular Surface Segments. IEEE Pattern Analysis and Machine Int. 16, 647–652 (1994)CrossRefGoogle Scholar
  27. 27.
    Vittone, J., Chassery, J.-M.: Recognition of digital naive planes and polyhedrization. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 296–307. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Valentin E. Brimkov
    • 1
  • Stefan S. Dantchev
    • 2
  1. 1.Fairmont State UniversityFairmontUSA
  2. 2.Science LabsUniversity of DurhamDurhamEngland

Personalised recommendations