Analysis and Comparative Evaluation of Discrete Tangent Estimators

  • Jacques-Olivier Lachaud
  • Anne Vialard
  • François de Vieilleville
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3429)


This paper presents a comparative evaluation of tangent estimators based on digital line recognition on digital curves. The comparison is carried out with a comprehensive set of criteria: accuracy on smooth or polygonal shapes, behaviour on convex/concave parts, computation time, isotropy, asymptotic convergence. We further propose a new estimator mixing the qualities of existing ones and outperforming them on most mentioned points.


Comparative Evaluation Tangent Direction Asymptotic Convergence Standard Line Maximal Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anderson, I.M., Bezdek, J.C.: Curvature and tangential deflection of discrete arcs: a theory based on the commutator of scatter matrix pairs and its application to vertex detection in planar shape data. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 27–40 (1984)zbMATHCrossRefGoogle Scholar
  2. 2.
    Coeurjolly, D.: Algorithmique et géométrie discrète pour la caractérisation des courbes et des surfaces. PhD thesis, Université Lumière Lyon 2, France (2002)Google Scholar
  3. 3.
    Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators of digital curves. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 252–258 (2004)CrossRefGoogle Scholar
  4. 4.
    Debled-Renesson, J.-P.I., Réveillès: A linear algorithm for segmentation of discrete curves. International Journal of Pattern Recognition and Artificial Intelligence 9, 635–662 (1995)CrossRefGoogle Scholar
  5. 5.
    Feschet, F.: Canonical representations of discrete curves. Pattern Analysis and Application. (Submitted)Google Scholar
  6. 6.
    Feschet, F., Tougne, L.: Optimal time computation of the tangent of a discrete curve: Application to the curvature. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 31–40. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Lachaud, J.-O., Vialard, A.: Discrete deformable boundaries for the segmentation of multidimensional images. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 542–551. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Lachaud, J.-O., Vialard, A.: Geometric measures on arbitrary dimensional digital surfaces. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 434–443. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Lenoir, A., Malgouyres, R., Revenu, M.: Fast computation of the normal vector field of the surface of a 3D discrete object. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 101–112. Springer, Heidelberg (1996)Google Scholar
  10. 10.
    Matas, J., Shao, Z., Kittler, J.: Estimation of curvature and tangent direction by median filtered differencing. In: Proc. of 8th International Conference on Image Analysis and Processing, pp. 83–88 (1995)Google Scholar
  11. 11.
    Vialard, A.: Geometrical parameters extraction from discrete paths. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 24–35. Springer, Heidelberg (1996)Google Scholar
  12. 12.
    Worring, M., Smeulders, A.W.M.: Digital curvature estimation. CVGIP: Image Understanding 58, 366–382 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jacques-Olivier Lachaud
    • 1
  • Anne Vialard
    • 1
  • François de Vieilleville
    • 1
  1. 1.LaBRIUniv. Bordeaux 1TalenceFrance

Personalised recommendations