Pixel Queue Algorithm for Geodesic Distance Transforms

  • Leena Ikonen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3429)


Geodesic distance transforms are usually computed with sequential mask operations, which may have to be iterated several times to get a globally optimal distance map. This article presents an efficient propagation algorithm based on a best-first pixel queue for computing the Distance Transform on Curved Space (DTOCS), applicable also for other geodesic distance transforms. It eliminates repetitions of local distance calculations, and performs in near-linear time.


Queue Length Local Distance Geodesic Distance Priority Queue Sequential Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Borgefors, G.: Distance Transformations in Arbitrary Dimensions. Computer Vision, Graphics, and Image Processing 27, 321–345 (1984)CrossRefGoogle Scholar
  2. 2.
    Borgefors, G.: Distance Transformations in Digital Images. Computer Vision, Graphics, and Image Processing 34, 344–371 (1986)CrossRefGoogle Scholar
  3. 3.
    Borgefors, G.: On digital distance transforms in three dimensions. Computer Vision and Image Understanding 64(3), 368–376 (1996)CrossRefGoogle Scholar
  4. 4.
    Borgefors, G., Hartmann, T., Tamimoto, S.L.: Parallell distance transforms on pyramid machines: theory and implementation. Signal Processing 21(1), 61–86 (1990)zbMATHCrossRefGoogle Scholar
  5. 5.
    Ikonen, L., Toivanen, P.: Shortest routes between sets on gray-level surfaces. In: Patter recognition and Image Analysis (PRIA), St. Petersburg, Russia, October 2004, pp. 244–247 (2004)Google Scholar
  6. 6.
    Ikonen, L., Toivanen, P.: Shortest routes on varying height surfaces using gray-level distance transforms. Image and Vision Computing 23(2), 133–141 (2005)CrossRefGoogle Scholar
  7. 7.
    Piper, J., Granum, E.: Computing Distance Transformations in Convex and Non-convex Domains. Pattern Recognition 20(6), 599–615 (1987)CrossRefGoogle Scholar
  8. 8.
    Rosenfeld, A., Pfaltz, J.L.: Sequential Operations in Digital Picture Processing. Journal of the Association for Computing Machinery 13(4), 471–494 (1966)zbMATHGoogle Scholar
  9. 9.
    Silvela, J., Portillo, J.: Breadth-first search and its application to image processing problems. IEEE Transactions on Image Processing 10(8), 1194–1199 (2001)zbMATHCrossRefGoogle Scholar
  10. 10.
    Soille, P.: Generalized geodesy via geodesic time. Pattern Recognition Letters 15(12), 1235–1240 (1994)CrossRefGoogle Scholar
  11. 11.
    Soille, P.: Morphological Image Processing: Principles and Applications, 2nd edn. Springer, Heidelberg (2003 and 2004.)zbMATHGoogle Scholar
  12. 12.
    Toivanen, P.: New geodesic distance transforms for gray-scale images. Pattern Recognition Letters 17, 437–450 (1996)CrossRefGoogle Scholar
  13. 13.
    Verwer, B.J.H., Verbeek, P.W., Dekker, S.T.: An efficient uniform cost algorithm applied to distance transforms. IEEE Trans. on Pattern Analysis and Machine Intelligence 11(4), 425–429 (1989)CrossRefGoogle Scholar
  14. 14.
    Vincent, L.: New trends in morphological algorithms. In: Proc. SPIE/SPSE, vol. 1451, pp. 158–170 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Leena Ikonen
    • 1
  1. 1.Department of Information TechnologyLappeenranta University of TechnologyLappeenrantaFinland

Personalised recommendations