Inclusion Relationships and Homotopy Issues in Shape Interpolation for Binary Images

  • Javier Vidal
  • Jose Crespo
  • Victor Maojo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3429)


Some image processing and analysis applications require performing image interpolation. This paper focuses on interpolation techniques that treat the shapes and the structures of binary images. A summary of some interpolation methods is presented, and their behavior concerning inclusion relationships and homotopy issues is studied. Then, this work discusses an inclusion relationship property that is used in a technique of ours based on median sets that has been recently proposed. The paper shows that such a property can improve shape interpolation results in a relatively easy manner. Several experimental results are provided.


image processing interpolation shape interpolation mathematical morphology median set 


  1. 1.
    Meijering, E.: A chronology of interpolation: From ancient astronomy to modern signal and image processing. In: Proceedings of the IEEE, vol. 90, pp. 319–342 (2002)Google Scholar
  2. 2.
    Soille, P.: Spatial distributions from contour lines: an efficient methodology based on distance transformations. Journal of Visual Communication and Image Representation 2, 138–150 (1991)CrossRefGoogle Scholar
  3. 3.
    Herman, G.T., Zheng, J., Bucholtz, C.A.: Shape-based interpolation. IEEE Computer Graphics and Application 12, 69–79 (1992)CrossRefGoogle Scholar
  4. 4.
    Beucher, S.: Interpolations d’ensembles, de partitions et de fonctions. Technical Report N-18/94/MM, Centre de Morphologie Mathématique (1994)Google Scholar
  5. 5.
    Guo, J.F., Cai, Y.L., Wang, Y.P.: Morphology-based interpolation for 3D medical image reconstruction. Computarized Medical Imaging and Graphics 19, 267–279 (1995)CrossRefGoogle Scholar
  6. 6.
    Iwanowski, M.: Application of Mathematical Morphology to Image Interpolation. PhD thesis, School of Mines of Paris - Warsaw University of Technology (2000)Google Scholar
  7. 7.
    Lee, T.Y., Wang, W.H.: Morphology-based three-dimensional interpolation. IEEE Transactions on Medical Imaging 19, 711–721 (2000)CrossRefGoogle Scholar
  8. 8.
    Meyer, F.: Interpolations. Technical Report N-16/94/MM, Centre de Morphologie Mathématique (1994)Google Scholar
  9. 9.
    Serra, J.: Interpolations et distances of Hausdorff. Technical Report N-15/94/MM, Centre de Morphologie Mathématique (1994)Google Scholar
  10. 10.
    Serra, J.: Mathematical Morphology, vol. I. Academic Press, London (1982)zbMATHGoogle Scholar
  11. 11.
    Serra, J. (ed.): Mathematical Morphology.Theoretical advances, vol. II. Academic Press, London (1988)Google Scholar
  12. 12.
    Soille, P.: Morphological Image Analysis: Principles and Applications, 2nd edn. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  13. 13.
    Dougherty, E.R., Lotufo, R.A.: Hands-on Morphological Image Processing. SPIE Press, Bellingham (2003)CrossRefGoogle Scholar
  14. 14.
    Vidal, J., Crespo, J., Maojo, V.: Recursive interpolation technique for binary images based on morphological median sets. In: accepted in International Symposium on Mathematical Morphology (ISMM 2005), Paris, France (2005)Google Scholar
  15. 15.
    Serra, J.: Hausdorff distances and interpolations. In: Heijmans, H.J., Roerdink, J.B. (eds.) Mathematical Morphology and its Applications to Images and Signal Processing, Dordrecht, The Netherlands, Kluwer Academics Publishers, Dordrecht (1998)Google Scholar
  16. 16.
    Iwanowski, M.: Morphological binary interpolation with convex mask. In: Proceedings International Conference on Computer Vision and Graphics, Zakopane, Poland (2002)Google Scholar
  17. 17.
    Iwanowski, M., Serra, J.: The morphologycal-affine object deformation. In: John Goutsias, L.V., Bloomberg, D.S. (eds.) International Symposium on Mathematical Morphology, Palo Alto, CA, p. 445. Kluwer Academics Publishers, Dordrecht (2000)Google Scholar
  18. 18.
    Migeon, B., Charreyron, R., Deforge, P., Marché, P.: Improvement of morphology-based interpolation. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 585–587 (1998)Google Scholar
  19. 19.
    Chatzis, V., Pitas, I.: Interpolation of 3d binary images based on morphological skeletonizations. In: Proceedings IEEE International Conference on Multimedia Computing Systems, Florence, Italy, vol. II, pp. 939–943 (1999)Google Scholar
  20. 20.
    Chatzis, V., Pitas, I.: Interpolation of 3D binary images based on morphological skeletonizations. IEEE Transaction on Medical Imaging 19, 699–710 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Javier Vidal
    • 1
    • 2
  • Jose Crespo
    • 1
  • Victor Maojo
    • 1
  1. 1.Artificial Intelligence Laboratory, Facultad de InformáticaUniversidad Politécnica de MadridBoadilla del Monte (Madrid)Spain
  2. 2.Computer Science DepartmentUniversidad de ConcepciónChile

Personalised recommendations