Geometric Robot Mapping

  • Rolf Lakaemper
  • Longin Jan Latecki
  • Xinyu Sun
  • Diedrich Wolter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3429)

Abstract

The purpose of this paper is to present a technique to create a global map of a robot’s surrounding by converting the raw data acquired from a scanning sensor to a compact map composed of just a few generalized polylines (polygonal curves). To merge a new scan with a previously computed map of the surrounding we use an approach that is composed of a local geometric process of merging similar line segments (termed Discrete Segment Evolution) of map and scan with a global statistical control process. The merging process is applied to a dataset gained from a real robot to show its ability to incrementally build a map showing the environment the robot has traveled through.

Keywords

Robot Mapping Polygon Merging Polygon Simplification Perceptual Grouping 

References

  1. 1.
    Cox, I.J.: Blanche: Position estimation for an autonomous robot vehicle. In: Cox, I.J., Wilfong, G.T. (eds.) Autonomous Robot Vehicles, pp. 221–228. Springer, Heidelberg (1990)Google Scholar
  2. 2.
    Dissanayake, G., Newman, P., Clark, S., Durrant-Whyte, H.F., Csorba, M.: A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions of Robotics and Automation (2001)Google Scholar
  3. 3.
    Fitzgibbon, A.: Robust registration of 2d and 3d point sets. In: Proc. British Machine Vision Conference, volume II, Manchester, UK, pp. 411–420 (2001)Google Scholar
  4. 4.
    Jacoff, A., Messina, E., Evans, J.: Performance evaluation of autonomous mobile robots. Industrial Robot: An Int. Journal 29(3) (2002)Google Scholar
  5. 5.
    Latecki, L.J., Lakämper, R., Wolter, D.: Shape similarity and visual parts. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 34–51. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Lowe, D.G.: Three-dimensional object recognition from single two-dimensional images. Artificial Intelligence 31, 355–395 (1987)CrossRefGoogle Scholar
  7. 7.
    Lu, F., Milios, E.: Robot pose estimation in unknown environments by matching 2D range scans. Journal of Intelligent and Robotic Systems (1997)Google Scholar
  8. 8.
    Pfister, S.T., Roumeliotis, S.I., Burdick, J.W.: Weighted line fitting algorithms for mobile robot map building and efficient data representation. In: ICRA (2003)Google Scholar
  9. 9.
    Röfer, T.: Using histogram correlation to create consistent laser scan maps. In: Proceedings of the IEEE International Conference on Robotics Systems, IROS-2002 (2002)Google Scholar
  10. 10.
    Thrun, S.: Robotic mapping: A survey. In: Lakemeyer, G., Nebel, B. (eds.) Exploring Artificial Intelligence in the New Millenium, Morgan Kaufmann, San Francisco (2002)Google Scholar
  11. 11.
    Wolter, D., Latecki, L.J.: Shape matching for robot mapping. In: Zhang, C., Guesgen, H.W., Yeap, W.K. (eds.) Proc. of 8th Pacific Rim Int. Conf. on Artificial Intelligence, Auckland, New Zealand (August 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Rolf Lakaemper
    • 1
  • Longin Jan Latecki
    • 1
  • Xinyu Sun
    • 2
  • Diedrich Wolter
    • 3
  1. 1.Temple UniversityPhiladelphiaUSA
  2. 2.Texas A&M UniversityCollege StationUSA
  3. 3.Universität BremenBremenGermany

Personalised recommendations